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Afterword 
When writing about data compression, I am haunted by the idea that many of the 
techniques discussed in this book have been patented by their inventors or others. The 
knowledge that a data compression algorithm can effectively be taken out of the hands of 
programmers through the use of so-called “intellectual property” law seems contrary to 
the basic principles that led me and many others into this profession.  

I have yet to see any evidence that applying patents to software advances that art or 
protects the rights of inventors. Several companies continue to collect royalties on patents 
long after their inventors have moved onto bigger and better thing with other companies. 
Have the patent-holders done anything notable other than collect royalties? Have they 
advanced the art of computer science? 

Making a software product into a commercial success requires innovation, good design, 
high-quality documentation, and listening to customers. These are things that nobody can 
steal from you. On the other hand, a mountain of patents can’t keep you from letting 
these things slip away through inattention or complacency. This lesson seems to be lost 
on those who traffic in intellectual property “portfolios.” 

What can you do? First, don’t patent your own work, and discourage your peers from 
doing so. Work on improving your products, not erecting legal obstacles to competition. 
Secondly, lobby for change. This means change within your company, those you do 
business with, and most importantly, within the federal government. Write to your 
congressman and your senator. Write to the ACM. Write to the House Subcommittee on 
Intellectual Property. And finally, you can join me by becoming a member of the League 
for Programming Freedom. Write for more information: 



League For Programming Freedom  
1 Kendall Square #143  
P.O. Box 9171  
Cambridge, MA 02139  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

I concluded, we kinotropists must be numbered among Britain's most adept programmers 
of Enginery of any sort, and virtually all advances on the compression of data have 
originated as kinotropic applications.  

At this point, he interrupted again, asking if I had indeed said "the compression of data," 
and was I familiar with the term "algorithmic compression"? I assured him I was. 

The Difference Engine 

William Gibson and Bruce Sterling 

Why This Book Is For You 
If you want to learn how programs like PKZIP and LHarc work, this book is for you. The 
compression techniques used in these programs are described in detail, accompanied by 
working code. After reading this book, even the novice C programmer will be able to 
write a complete compression/archiving program that can be ported to virtually any 
operating system or hardware platform.  

If you want to include data compression in other programs you write, this book will 
become an invaluable tool. It contains dozens of working programs with C code that can 
easily be added to your applications. In-depth discussions of various compression 
methods will help you make intelligent decisions when creating programs that use data 
compression. 

If you want to learn why lossy compression of graphics is the key factor in enabling the 
multimedia revolution, you need this book. DCT-based compression like that used by the 



JPEG algorithm is described in detail. The cutting edge technology of fractal 
compression is explained in useful terms, instead of the purly theoretical. Working 
programs let you experiment with these fascinating new technologies. 

The Data Compression Book provides you with a comprehensive reference to this 
important field. No other book available has the detailed description of compression 
algorithms or working C implementations for those algorithms. If you are planning to 
work in this field, The Data Compression Book is indispensable. 

 
 
 
 
 
 
 
 
 
 

Chapter 1 
Introduction to Data Compression  
The primary purpose of this book is to explain various data-compression techniques using 
the C programming language. Data compression seeks to reduce the number of bits used 
to store or transmit information. It encompasses a wide variety of software and hardware 
compression techniques which can be so unlike one another that they have little in 
common except that they compress data. The LZW algorithm used in the Compuserve 
GIF specification, for example, has virtually nothing in common with the CCITT G.721 
specification used to compress digitized voice over phone lines.  

This book will not take a comprehensive look at every variety of data compression. The 
field has grown in the last 25 years to a point where this is simply not possible. What this 
book will cover are the various types of data compression commonly used on personal 
and midsized computers, including compression of binary programs, data, sound, and 
graphics. 

Furthermore, this book will either ignore or only lightly cover data-compression 
techniques that rely on hardware for practical use or that require hardware applications. 
Many of today’s voice-compression schemes were designed for the worldwide fixed-
bandwidth digital telecommunications networks. These compression schemes are 
intellectually interesting, but they require a specific type of hardware tuned to the fixed 
bandwidth of the communications channel. Different algorithms that don’t have to meet 
this requirement are used to compress digitized voice on a PC, and these algorithms 
generally offer better performance. 



Some of the most interesting areas in data compression today, however, do concern 
compression techniques just becoming possible with new and more powerful hardware. 
Lossy image compression, like that used in multimedia systems, for example, can now be 
implemented on standard desktop platforms. This book will cover practical ways to both 
experiment with and implement some of the algorithms used in these techniques. 

The Audience 

You will need basic programming skills to adequately discuss data-compression code. 
The ability to follow block-structured code, such as C or Pascal, is a requirement. In 
addition, understanding computer architecture well enough to follow bit-oriented 
operations, such as shifting, logical ORing and ANDing, and so on, will be essential.  

This does not mean that you need to be a C guru for this book to be worthwhile. You 
don’t even have to be a programmer. But the ability to follow code will be essential, 
because the concepts discussed here will be illustrated with portable C programs. The C 
code in this book has been written with an eye toward simplicity in the hopes that C 
novices will still be able to follow the programs. We will avoid the more esoteric 
constructs of C, but the code will be working tested C—no pseudocode or English. 

Why C? 

The use of C to illustrate data-compression algorithms may raise some hackles, although 
less so these days than when the first edition of this book came out. A more traditional 
way to write this book would have been to use pseudocode to sketch out the algorithms. 
But the lack of rigor in a pseudocode “program” often leads to hazy or incomplete 
definitions full of lines like “PROCESS FILE UNTIL OUT OF DATA.” The result is 
that pseudocode is easy to read, but not so easy to translate into a working program.  

If pseudocode is unsatisfactory, the next best choice is to use a conventional 
programming language. Though hundreds of choices are available, C seems the best 
choice for this type of book for several good reasons. First, in many respects C has 
become the lingua franca of programmers. That C compilers support computers ranging 
from a lowly 8051 microcontroller to supercomputers capable of 100 million instructions 
per second (MIPS) has had much to do with this. It doesn’t mean that C is the language 
of choice for all programmers. What it does mean is that most programmers should have 
a C compiler available for their machines, and most are probably regularly exposed to C 
code. Because of this, many programmers who use other languages can still manage to 
code in C, and even more can at least read C. 

A second reason for using C is that it is a language without too many surprises. The few 
constructs it uses as basic language elements are easily translated to other languages. So a 
data-compression program that is illustrated using C can be converted to a working 
Pascal program through a relatively straightforward translation procedure. Even 
assembly-language programmers should find the process relatively painless. 



Perhaps the most important reason for using C is simply one of efficiency. C is often 
thought of as a high-level assembly language, since it allows programmers to get close to 
the hardware. Despite the increasing optimization found in recent C compilers, it is not 
likely that C will ever exceed the speed or size possible in hand-coded assembly language. 
That flaw is offset, however, by the ability to easily port C code to other machines. So for 
a book of this type, C is probably the most efficient choice. 

Which C? 

Despite being advertised as a “portable” language, a C program that compiles and 
executes on a given machine is not guaranteed to run on any other. It may not even 
compile using a different compiler on the same machine. The important thing to 
remember is not that C is portable, but that it can be portable. The code for this book has 
been written to be portable, and it compiles and runs cleanly using several compilers and 
environments. The compilers/environments used here include: 

•  Microsoft Visual C++ 1.5, MS-DOS 5.0/6.22  
•  Borland C++ 4.0-4.5, MS-DOS 5.0/6.22  
•  Symantec C++ 6.0-7.0, MS-DOS 5.0/6.22  
•  Interactive Unix System 3.2 with the portable C compiler  
•  Solaris 2.4 with SunSoft compiler  
•  Linux 1.1 with the GNU C compiler  

Issues in Writing Portable C 

One important portability issue is library function calls. Though the C programming 
language was fairly well defined by the original K&R book (Brian W. Kernighan and 
Dennis M. Ritchie, The C Programming Language [Englewood Cliffs, NJ.: Prentice-Hall, 
1978]), the run-time library implementation was left totally up to the whims of the 
implementor. Fortunately, the American National Standards Institute was able to 
complete the C language specification in 1990, and the result was published as ANSI 
standard XJ11.34. This standard not only expanded and pinned down the original K&R 
language specification, but it also took on the definition of a standard C run-time library. 
This makes it much easier to write code that works the same way from machine to 
machine. The code in this book will be written with the intention of using only ANSI C 
library calls. Compiler-dependent extensions to either the language or the library will be 
avoided wherever possible.  

Given the standardization of the libraries, the remaining portability issues center around 
two things: sizes of the basic data types and dealing with noncompliant compilers. The 
majority of data-type conflicts arise when switching between 16- and 32-bit machines. 

Fortunately, it is fairly easy to manage the change between 16- and 32-bit machines. 
Though the basic integer data type switches between 16- and 32-bits, both machines have 
a 16-bit “short int” data type. Once again, a “long int” is generally 32 bits on both 



machines. So in cases where the size of an integer clearly matters, it can be pinned down 
to either 16-or 32-bits with the appropriate declaration. 

On the vast majority of machines used in the world today, the C compiler implementation 
of the “char” data type is 8 bits wide. In this book, we will gloss over the possibility that 
any other size exists and stick with 8-bit characters. In general, porting a program shown 
here to a machine with an unusual char size is not too difficult, but spending too much 
time on it will obscure the important point of the programs here, which is data 
compression. 

The final issue to deal with when writing portable code is the problem of noncompliant 
compilers. In the MS-DOS world, most C compilers undergo major releases and upgrades 
every two years or so. This means that most compiler vendors have been able to release 
new versions of their compilers that now conform closely to the ANSI C standard. But 
this is not the case for users of many other operating systems. In particular, UNIX users 
will frequently be using a C compiler which came with their system and which conforms 
to the older K&R language definition. While the ANSI C committee went to great lengths 
to make ANSI C upwardly compatible from K&R C, we need to watch out for a few 
problems. 

The first problem lies in the use of function prototypes. Under K&R C, function 
prototypes were generally used only when necessary. The compiler assumed that any 
unseen function returned an integer, and it accepted this without complaint. If a function 
returned something unusual—a pointer or a long, for instance—the programmer would 
write a function prototype to inform the compiler. 

long locate_string(); 

Here, the prototype told the compiler to generate code that assumes that the function 
returned a long instead of an int. Function prototypes didn’t have much more use than 
that. Because of this, many C programmers working under a K&R regime made little or 
no use of function prototypes, and their appearance in a program was something of an 
oddity.  

While the ANSI C committee tried not to alter the basic nature of C, they were unable to 
pass up the potential improvements to the language that were possible through the 
expansion of the prototyping facility. Under ANSI C, a function prototype defines not 
only the return type of a function, but also the type of all the arguments as well. The 
function shown earlier, for example, might have the following prototype with an ANSI C 
compiler: 

long locate_string( FILE *input_file, char *string ); 

This lets the compiler generate the correct code for the return type and check for the 
correct type and number of arguments as well. Since passing the wrong type or number of 
arguments to a function is a major source of programmer error in C, the committee 



correctly assumed that allowing this form of type checking constituted a step forward for 
C.  

Under many ANSI C compilers, use of full ANSI function prototypes is strongly 
encouraged. In fact, many compilers will generate warning messages when a function is 
used without previously encountering a prototype. This is well and good, but the same 
function prototypes will not work on a trusty portable C compiler under UNIX. 

The solution to this dilemma is not pretty, but it works. Under ANSI C, the predefined 
macro ___STDC___ is always defined to indicate that the code is being compiled 
through a presumably ANSI-compliant compiler. We can let the preprocessor turn certain 
sections of our header files on or off, depending on whether we are using a noncompliant 
compiler or not. A header file containing the prototypes for a bit-oriented package, for 
example, might look something like this: 

#ifdef ___STDC___ 
 
FILE *open_bitstream( char *file_name, char *mode ); 
void close_bitstream( FILE *bitstream ); 
int read_bit( FILE*bitstream ); 
int write_bit( FILE *bitstream, int bit ); 
 
#else 
 
FILE *open_bitstream(); 
void close_bitstream(); 
int read_bit(); 
int write_bit(); 
 
#endif 

The preprocessor directives don’t contribute much to the look of the code, but they are a 
necessary part of writing portable programs. Since the programs in this book are 
supposed to be compiled with the compiler set to its maximum possible warning level, a 
few “#ifdef” statements will be part of the package.  

A second problem with the K&R family of C compilers lies in the actual function body. 
Under K&R C, a particular function might have a definition like the one below. 

int foo( c ) 
char c; 
{ 
/* Function body */ 
} 

The same function written using an ANSI C function body would look like this:  

int foo( char c ) 
{ 
/* Function body */ 
} 



These two functions may look the same, but ANSI C rules require that they be treated 
differently. The K&R function body will have the compiler “promote” the character 
argument to an integer before using it in the function body, but the ANSI C function body 
will leave it as a character. Promoting one integral type to another lets lots of sneaky 
problems slip into seemingly well-written code, and the stricter compilers will issue 
warnings when they detect a problem of this nature.  

Since K&R compilers will not accept the second form of a function body, be careful 
when defining character arguments to functions. Unfortunately, the solutions are once 
again either to not use character arguments or to resort to more of the ugly “#ifdef” 
preprocessor baggage. 

Keeping Score 

Throughout this book, there will be references to “compression ratios” and compression 
statistics. To keep the various forms of compression on a level playing field, compression 
statistics will always be in relationship to the sample compression files used in the 
February 1991 Dr. Dobb’s Journal compression contest. These files consist of about 6 
megabytes of data broken down into three roughly equal categories. The first category is 
text, consisting of manuscripts, programs, memos, and other readable files. The second 
category consists of binary data, including database files, executable files, and 
spreadsheet data. The third category consists of graphics files stored in raw screen-dump 
formats.  

The programs created and discussed in this book will be judged by three rough measures 
of performance. The first will be the amount of memory consumed by the program during 
compression; this number will be approximated as well as it can be. The second will be 
the amount of time the program takes to compress the entire Dr. Dobb’s dataset. The 
third will be the compression ratio of the entire set. 

Different people use different formulas to calculate compression ratios. Some prefer 
bits/bytes. Other use ratios, such as 2:1 or 3:1 (advertising people seem to like this 
format). In this book, we will use a simple compression-percentage formula: 

( 1 - ( compressed_size / raw_size ) ) * 100 

This means that a file that doesn’t change at all when compressed will have a 
compression ratio of 0 percent. A file compressed down to one-third of its original size 
will have a compression ratio of 67 percent. A file that shrinks down to 0 bytes (!) will 
have a compression ratio of 100 percent.  

This way of measuring compression may not be perfect, but it shows perfection at 100 
percent and total failure at 0 percent. In fact, a file that goes through a compression 
program and comes out larger will show a negative compression ratio. 



The Structure 

This book consists of thirteen chapters and a floppy disk. The organization roughly 
parallels the historical progression of data compression, starting in the “dawn age” 
around 1950 and working up to the present.  

Chapter 2 is a reference chapter which attempts to establish the fundamental data-
compression lexicon. It discusses the birth of information theory, and it introduces a 
series of concepts, terms, buzzwords, and theories used over and over in the rest of the 
book. Even if you are a data-compression novice, mastery of chapter 2 will bring you up 
to the “cocktail party” level of information, meaning that you will be able to carry on an 
intelligent-sounding conversation about data compression even if you don’t fully 
understand its intricacies. 

Chapter 3 discusses the birth of data compression, starting with variable-length bit coding. 
The development of Shannon-Fano coding and Huffman coding represented the birth of 
both data compression and information theory. These coding methods are still in wide use 
today. In addition, chapter 3 discusses the difference between modeling and coding—the 
two faces of the data-compression coin. 

Standard Huffman coding suffers from a significant problem when used for high-
performance data compression. The compression program has to pass a complete copy of 
the Huffman coding statistics to the expansion program. As the compression program 
collects more statistics and tries to increase its compression ratio, the statistics take up 
more space and work against the increased compression. Chapter 4 discusses a way to 
solve this dilemma: adaptive Huffman coding. This is a relatively recent innovation, due 
to CPU and memory requirements. Adaptive coding greatly expands the horizons of 
Huffman coding, leading to vastly improved compression ratios. 

Huffman coding has to use an integral number of bits for each code, which is usually 
slightly less than optimal. A more recent innovation, arithmetic coding, uses a fractional 
number of bits per code, allowing it to incrementally improve compression performance. 
Chapter 5 explains how this recent innovation works, and it shows how to integrate an 
arithmetic coder with a statistical model. 

Chapter 6 discusses statistical modeling. Whether using Huffman coding, adaptive 
Huffman coding, or arithmetic coding, it is still necessary to have a statistical model to 
drive the coder. This chapter shows some of the interesting techniques used to implement 
powerful models using limited memory resources. 

Dictionary compression methods take a completely different approach to compression 
from the techniques discussed in the previous four chapters. Chapter 7 provides an 
overview of these compression methods, which represent strings of characters with single 
codes. Dictionary methods have become the de facto standard for general-purpose data 
compression on small computers due to their high-performance compression combined 
with reasonable memory requirements. 



The fathers of dictionary-based compression, Ziv and Lempel published a paper in 1977 
proposing a sliding dictionary methods of data compression which has become very 
popular. Chapter 8 looks at recent adaptations of LZ77 compression used in popular 
archiving programs such as PKZIP. 

Chapter 9 takes detailed look at one of the first widely popular dictionary-based 
compression methods: LZW compression. LZW is the compression method used in the 
UNIX COMPRESS program and in earlier versions of the MS-DOS ARC program. This 
chapter also takes a look at the foundation of LZW compression, published in 1978 by 
Ziv and Lempel. 

All of the compression techniques discussed through chapter 9 are “lossless.” Lossy 
methods can be used on speech and graphics, and they are capable of achieving 
dramatically higher compression ratios. Chapter 10 shows how lossy compression can be 
used on digitized sound data which techniques like linear predictive coding and adaptive 
PCM. 

Chapter 11 discusses lossy compression techniques applied to computer graphics. The 
industry is standardizing rapidly on the JPEG standard for compressing graphical images. 
The techniques used in the JPEG standard will be presented in this chapter. 

Chapter 12 describes how to put it all together into an archive program. A general-
purpose archiving program should be able to compress and decompress files while 
keeping track of files names, dates, attributes, compression ratios, and compression 
methods. An archive format should ideally be portable to different types of computers. A 
sample archive program is developed, which applies the techniques used in previous 
chapters to put together a complete program. 

Chapter 13 is a detailed look at fractal compression techniques. The world of fractal 
compression offers some exciting methods of achieving maximum compression for your 
data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 2 
The Data-Compression Lexicon, with a History  
Like any other scientific or engineering discipline, data compression has a vocabulary 
that at first seem overwhelmingly strange to an outsider. Terms like Lempel-Ziv 
compression, arithmetic coding, and statistical modeling get tossed around with reckless 
abandon.  

While the list of buzzwords is long enough to merit a glossary, mastering them is not as 
daunting a project as it may first seem. With a bit of study and a few notes, any 
programmer should hold his or her own at a cocktail-party argument over data-
compression techniques. 

The Two Kingdoms 

Data-compression techniques can be divided into two major families; lossy and lossless. 
Lossy data compression concedes a certain loss of accuracy in exchange for greatly 
increased compression. Lossy compression proves effective when applied to graphics 
images and digitized voice. By their very nature, these digitized representations of analog 
phenomena are not perfect to begin with, so the idea of output and input not matching 
exactly is a little more acceptable. Most lossy compression techniques can be adjusted to 
different quality levels, gaining higher accuracy in exchange for less effective 
compression. Until recently, lossy compression has been primarily implemented using 
dedicated hardware. In the past few years, powerful lossy-compression programs have 
been moved to desktop CPUs, but even so the field is still dominated by hardware 
implementations.  



Lossless compression consists of those techniques guaranteed to generate an exact 
duplicate of the input data stream after a compress/expand cycle. This is the type of 
compression used when storing database records, spreadsheets, or word processing files. 
In these applications, the loss of even a single bit could be catastrophic. Most techniques 
discussed in this book will be lossless. 

Data Compression = Modeling + Coding 

In general, data compression consists of taking a stream of symbols and transforming 
them into codes. If the compression is effective, the resulting stream of codes will be 
smaller than the original symbols. The decision to output a certain code for a certain 
symbol or set of symbols is based on a model. The model is simply a collection of data 
and rules used to process input symbols and determine which code(s) to output. A 
program uses the model to accurately define the probabilities for each symbol and the 
coder to produce an appropriate code based on those probabilities.  

Modeling and coding are two distinctly different things. People frequently use the term 
coding to refer to the entire data-compression process instead of just a single component 
of that process. You will hear the phrases “Huffman coding” or “Run-Length Encoding,” 
for example, to describe a data-compression technique, when in fact they are just coding 
methods used in conjunction with a model to compress data. 

Using the example of Huffman coding, a breakdown of the compression process looks 
something like this: 

 
Figure 2.1  A Statistical Model with a Huffman Encoder. 

In the case of Huffman coding, the actual output of the encoder is determined by a set of 
probabilities. When using this type of coding, a symbol that has a very high probability of 
occurrence generates a code with very few bits. A symbol with a low probability 
generates a code with a larger number of bits.  

We think of the model and the program’s coding process as different because of the 
countless ways to model data, all of which can use the same coding process to produce 
their output. A simple program using Huffman coding, for example, would use a model 
that gave the raw probability of each symbol occurring anywhere in the input stream. A 
more sophisticated program might calculate the probability based on the last 10 symbols 
in the input stream. Even though both programs use Huffman coding to produce their 
output, their compression ratios would probably be radically different. 



So when the topic of coding methods comes up at your next cocktail party, be alert for 
statements like “Huffman coding in general doesn’t produce very good compression 
ratios.” This would be your perfect opportunity to respond with “That’s like saying 
Converse sneakers don’t go very fast. I always thought the leg power of the runner had a 
lot to do with it.” If the conversation has already dropped to the point where you are 
discussing data compression, this might even go over as a real demonstration of wit. 

The Dawn Age 

Data compression is perhaps the fundamental expression of Information Theory. 
Information Theory is a branch of mathematics that had its genesis in the late 1940s with 
the work of Claude Shannon at Bell Labs. It concerns itself with various questions about 
information, including different ways of storing and communicating messages.  

Data compression enters into the field of Information Theory because of its concern with 
redundancy. Redundant information in a message takes extra bit to encode, and if we can 
get rid of that extra information, we will have reduced the size of the message. 

Information Theory uses the term entropy as a measure of how much information is 
encoded in a message. The word entropy was borrowed from thermodynamics, and it has 
a similar meaning. The higher the entropy of a message, the more information it contains. 
The entropy of a symbol is defined as the negative logarithm of its probability. To 
determine the information content of a message in bits, we express the entropy using the 
base 2 logarithm: 

Number of bits = - Log base 2 (probability) 

The entropy of an entire message is simply the sum of the entropy of all individual 
symbols.  

Entropy fits with data compression in its determination of how many bits of information 
are actually present in a message. If the probability of the character ‘e’ appearing in this 
manuscript is 1/16, for example, the information content of the character is four bits. So 
the character string “eeeee” has a total content of 20 bits. If we are using standard 8-bit 
ASCII characters to encode this message, we are actually using 40 bits. The difference 
between the 20 bits of entropy and the 40 bits used to encode the message is where the 
potential for data compression arises. 

One important fact to note about entropy is that, unlike the thermodynamic measure of 
entropy, we can use no absolute number for the information content of a given message. 
The problem is that when we calculate entropy, we use a number that gives us the 
probability of a given symbol. The probability figure we use is actually the probability 
for a given model, not an absolute number. If we change the model, the probability will 
change with it. 



How probabilities change can be seen clearly when using different orders with a 
statistical model. A statistical model tracks the probability of a symbol based on what 
symbols appeared previously in the input stream. The order of the model determines how 
many previous symbols are taken into account. An order-0 model, for example, won’t 
look at previous characters. An order-1 model looks at the one previous character, and so 
on.  

The different order models can yield drastically different probabilities for a character. 
The letter ‘u’ under an order-0 model, for example, may have only a 1 percent probability 
of occurrence. But under an order-1 model, if the previous character was ‘q,’ the ‘u’ may 
have a 95 percent probability. 

This seemingly unstable notion of a character’s probability proves troublesome for many 
people. They prefer that a character have a fixed “true” probability that told what the 
chances of its “really” occurring are. Claude Shannon attempted to determine the true 
information content of the English language with a “party game” experiment. He would 
uncover a message concealed from his audience a single character at a time. The 
audience guessed what the next character would be, one guess at a time, until they got it 
right. Shannon could then determine the entropy of the message as a whole by taking the 
logarithm of the guess count. Other researchers have done more experiments using 
similar techniques. 

While these experiments are useful, they don’t circumvent the notion that a symbol’s 
probability depends on the model. The difference with these experiments is that the 
model is the one kept inside the human brain. This may be one of the best models 
available, but it is still a model, not an absolute truth. 

In order to compress data well, we need to select models that predict symbols with high 
probabilities. A symbol that has a high probability has a low information content and will 
need fewer bits to encode. Once the model is producing high probabilities, the next step 
is to encode the symbols using an appropriate number of bits. 

Coding 

Once Information Theory had advanced to where the number of bits of information in a 
symbol could be determined, the next step was to develop new methods for encoding 
information. To compress data, we need to encode symbols with exactly the number of 
bits of information the symbol contains. If the character ‘e’ only gives us four bits of 
information, then it should be coded with exactly four bits. If ‘x’ contains twelve bits, it 
should be coded with twelve bits.  

By encoding characters using EBCDIC or ASCII, we clearly aren’t going to be very close 
to an optimum method. Since every character is encoded using the same number of bits, 
we introduce lots of error in both directions, with most of the codes in a message being 
too long and some being too short. 



Solving this coding problem in a reasonable manner was one of the first problems tackled 
by practitioners of Information Theory. Two approaches that worked well were Shannon-
Fano coding and Huffman coding—two different ways of generating variable-length 
codes when given a probability table for a given set of symbols. 

Huffman coding, named for its inventor D.A. Huffman, achieves the minimum amount of 
redundancy possible in a fixed set of variable-length codes. This doesn’t mean that 
Huffman coding is an optimal coding method. It means that it provides the best 
approximation for coding symbols when using fixed-width codes. 

The problem with Huffman or Shannon-Fano coding is that they use an integral number 
of bits in each code. If the entropy of a given character is 2.5 bits, the Huffman code for 
that character must be either 2 or 3 bits, not 2.5. Because of this, Huffman coding can’t 
be considered an optimal coding method, but it is the best approximation that uses fixed 
codes with an integral number of bits. Here is a sample of Huffman codes: 

Symbol  Huffman Code  

E  100  
T  101  
A  1100  
I  11010  

…   
X  01101111  
Q  01101110001  
Z  01101110000  

An Improvement 

Though Huffman coding is inefficient due to using an integral number of bits per code, it 
is relatively easy to implement and very economical for both coding and decoding. 
Huffman first published his paper on coding in 1952, and it instantly became the most-
cited paper in Information Theory. It probably still is. Huffman’s original work spawned 
numerous minor variations, and it dominated the coding world till the early 1980s.  

As the cost of CPU cycles went down, new possibilities for more efficient coding 
techniques emerged. One in particular, arithmetic coding, is a viable successor to 
Huffman coding. 

Arithmetic coding is somewhat more complicated in both concept and implementation 
than standard variable-width codes. It does not produce a single code for each symbol. 
Instead, it produces a code for an entire message. Each symbol added to the message 



incrementally modifies the output code. This is an improvement because the net effect of 
each input symbol on the output code can be a fractional number of bits instead of an 
integral number. So if the entropy for character ‘e’ is 2.5 bits, it is possible to add exactly 
2.5 bits to the output code. 

An example of why this can be more effective is shown in the following table, the 
analysis of an imaginary message. In it, Huffman coding would yield a total message 
length of 89 bits, but arithmetic coding would approach the true information content of 
the message, or 83.56 bits. The difference in the two messages works out to 
approximately 6 percent. Here are some sample message probabilities: 

Symbol  Number of 
Occurrences  

Information 
Content  

Huffman 
Code Bit 
Count  

Total Bits 
Huffman 
Coding  

Total Bits 
Arithmetic 
Coding  

 
E  20  1.26 bits  1 bits  20  25.2  
A  20  1.26 bits  2 bits  40  25.2  
X  3  4.00 bits  3 bits  9  12.0  
Y  3  4.00 bits  4 bits  12  12.0  
Z  2  4.58 bits  4 bits  8  9.16  
    89  83.56  

The problem with Huffman coding in the above message is that it can’t create codes with 
the exact information content required. In most cases it is a little above or a little below, 
leading to deviations from the optimum. But arithmetic coding gets to within a fraction of 
a percent of the actual information content, resulting in more accurate coding.  

Arithmetic coding requires more CPU power than was available until recently. Even now 
it will generally suffer from a significant speed disadvantage when compared to older 
coding methods. But the gains from switching to this method are significant enough to 
ensure that arithmetic coding will be the coding method of choice when the cost of 
storing or sending information is high enough. 

Modeling 

If we use a an automotive metaphor for data compression, coding would be the wheels, 
but modeling would be the engine. Regardless of the efficiency of the coder, if it doesn’t 
have a model feeding it good probabilities, it won’t compress data.  

Lossless data compression is generally implemented using one of two different types of 
modeling: statistical or dictionary-based. Statistical modeling reads in and encodes a 
single symbol at a time using the probability of that character’s appearance. Dictionary-
based modeling uses a single code to replace strings of symbols. In dictionary-based 



modeling, the coding problem is reduced in significance, leaving the model supremely 
important. 

Statistical Modeling 

The simplest forms of statistical modeling use a static table of probabilities. In the earliest 
days of information theory, the CPU cost of analyzing data and building a Huffman tree 
was considered significant, so it wasn’t frequently performed. Instead, representative 
blocks of data were analyzed once, giving a table of character-frequency counts. Huffman 
encoding/decoding trees were then built and stored. Compression programs had access to 
this static model and would compress data using it.  

But using a universal static model has limitations. If an input stream doesn’t match well 
with the previously accumulated statistics, the compression ratio will be degraded—
possibly to the point where the output stream becomes larger than the input stream. The 
next obvious enhancement is to build a statistics table for every unique input stream. 

Building a static Huffman table for each file to be compressed has its advantages. The 
table is uniquely adapted to that particular file, so it should give better compression than a 
universal table. But there is additional overhead since the table (or the statistics used to 
build the table) has to be passed to the decoder ahead of the compressed code stream. 

For an order-0 compression table, the actual statistics used to create the table may take up 
as little as 256 bytes—not a very large amount of overhead. But trying to achieve better 
compression through use of a higher order table will make the statistics that need to be 
passed to the decoder grow at an alarming rate. Just moving to an order 1 model can 
boost the statistics table from 256 to 65,536 bytes. Though compression ratios will 
undoubtedly improve when moving to order-1, the overhead of passing the statistics table 
will probably wipe out any gains. 

For this reason, compression research in the last 10 years has concentrated on adaptive 
models. When using an adaptive model, data does not have to be scanned once before 
coding in order to generate statistics. Instead, the statistics are continually modified as 
new characters are read in and coded. The general flow of a program using an adaptive 
model looks something like that shown in Figures 2.2 and 2.3. 

 
Figure 2.2  General Adaptive Compression. 



 
Figure 2.3  General Adaptive Decompression. 

The important point in making this system work is that the box labeled “Update Model” 
has to work exactly the same way for both the compression and decompression programs. 
After each character (or group of characters) is read in, it is encoded or decoded. Only 
after the encoding or decoding is complete can the model be updated to take into account 
the most recent symbol or group of symbols.  

One problem with adaptive models is that they start knowing essentially nothing about 
the data. So when the program first starts, it doesn’t do a very good job of compression. 
Most adaptive algorithms tend to adjust quickly to the data stream and will begin turning 
in respectable compression ratios after only a few thousand bytes. Likewise, it doesn’t 
take long for the compression-ratio curve to flatten out so that reading in more data 
doesn’t improve the compression ratio. 

One advantage that adaptive models have over static models is the ability to adapt to 
local conditions. When compressing executable files, for example, the character of the 
input data may change drastically as the program file changes from binary program code 
to binary data. A well-written adaptive program will weight the most recent data higher 
than old data, so it will modify its statistics to better suit changed data. 

Dictionary Schemes 

Statistical models generally encode a single symbol at a time— reading it in, calculating 
a probability, then outputting a single code. A dictionary-based compression scheme uses 
a different concept. It reads in input data and looks for groups of symbols that appear in a 
dictionary. If a string match is found, a pointer or index into the dictionary can be output 
instead of the code for the symbol. The longer the match, the better the compression ratio.  

This method of encoding changes the focus of dictionary compression. Simple coding 
methods are generally used, and the focus of the program is on the modeling. In LZW 
compression, for example, simple codes of uniform width are used for all substitutions. 

A static dictionary is used like the list of references in an academic paper. Through the 
text of a paper, the author may simply substitute a number that points to a list of 
references instead of writing out the full title of a referenced work. The dictionary is 
static because it is built up and transmitted with the text of work—the reader does not 



have to build it on the fly. The first time I see a number in the text like this—[2]—I know 
it points to the static dictionary. 

The problem with a static dictionary is identical to the problem the user of a statistical 
model faces: The dictionary needs to be transmitted along with the text, resulting in a 
certain amount of overhead added to the compressed text. An adaptive dictionary scheme 
helps avoid this problem. 

Mentally, we are used to a type of adaptive dictionary when performing acronym 
replacements in technical literature. The standard way to use this adaptive dictionary is to 
spell out the acronym, then put its abbreviated substitution in parentheses. So the first 
time I mention the Massachusetts Institute of Technology (MIT), I define both the 
dictionary string and its substitution. From then on, referring to MIT in the text should 
automatically invoke a mental substitution.  

Ziv and Lempel 

Until 1980, most general-compression schemes used statistical modeling. But in 1977 
and 1978, Jacob Ziv and Abraham Lempel described a pair of compression methods 
using an adaptive dictionary. These two algorithms sparked a flood of new techniques 
that used dictionary-based methods to achieve impressive new compression ratios.  

LZ77 

The first compression algorithm described by Ziv and Lempel is commonly referred to as 
LZ77. It is relatively simple. The dictionary consists of all the strings in a window into 
the previously read input stream. A file-compression program, for example, could use a 
4K-byte window as a dictionary. While new groups of symbols are being read in, the 
algorithm looks for matches with strings found in the previous 4K bytes of data already 
read in. Any matches are encoded as pointers sent to the output stream.  

LZ77 and its variants make attractive compression algorithms. Maintaining the model is 
simple; encoding the output is simple; and programs that work very quickly can be 
written using LZ77. Popular programs such as PKZIP and LHarc use variants of the 
LZ77 algorithm, and they have proven very popular. 

LZ78 

The LZ78 program takes a different approach to building and maintaining the dictionary. 
Instead of having a limited-size window into the preceding text, LZ78 builds its 
dictionary out of all of the previously seen symbols in the input text. But instead of 
having carte blanche access to all the symbol strings in the preceding text, a dictionary of 
strings is built a single character at a time. The first time the string “Mark” is seen, for 
example, the string “Ma” is added to the dictionary. The next time, “Mar” is added. If 
“Mark” is seen again, it is added to the dictionary.  



This incremental procedure works very well at isolating frequently used strings and 
adding them to the table. Unlike LZ77 methods, strings in LZ78 can be extremely long, 
which allows for high-compression ratios. LZ78 was the first of the two Ziv-Lempel 
algorithms to achieve popular success, due to the LZW adaptation by Terry Welch, which 
forms the core of the UNIX compress program. 

Lossy Compression 

Until recently, lossy compression has been primarily performed on special-purpose 
hardware. The advent of inexpensive Digital Signal Processor (DSP) chips began lossy 
compression’s move off the circuit board and onto the desktop. CPU prices have now 
dropped to where it is becoming practical to perform lossy compression on general-
purpose desktop PCs.  

Lossy compression is fundamentally different from lossless compression in one respect: 
it accepts a slight loss of data to facilitate compression. Lossy compression is generally 
done on analog data stored digitally, with the primary applications being graphics and 
sound files. 

This type of compression frequently makes two passes. A first pass over the data 
performs a high-level, signal-processing function. This frequently consists of 
transforming the data into the frequency domain, using algorithms similar to the well-
known Fast Fourier Transform (FFT). Once the data has been transformed, it is 
“smoothed,” rounding off high and low points. Loss of signal occurs here. Finally, the 
frequency points are compressed using conventional lossless techniques. 

The smoothing function that operates on the frequency-domain data generally has a 
“quality factor” built into it that determines just how much smoothing occurs. The more 
the data is massaged, the greater the signal loss—and more compression will occur. 

In the small systems world, a tremendous amount of work is being done on graphical 
image compression, both for still and moving pictures. The International Standards 
Organization (ISO) and the Consultive Committee for International Telegraph and 
Telephone (CCITT) have banded together to form two committees: The Joint 
Photographic Experts Group (JPEG) and the Moving Pictures Expert Group (MPEG). 
The JPEG committee has published its compression standard, and many vendors are now 
shipping hardware and software that are JPEG compliant. The MPEG committee 
completed an intial moving picture compression standard, and is finalizing a second, 
MPEG-II. 

The JPEG standard uses the Discrete Cosine Transform (DCT) algorithm to convert a 
graphics image to the frequency domain. The DCT algorithm has been used for graphics 
transforms for many years, so efficient implementations are readily available. JPEG 
specifies a quality factor of 0 to 100, and it lets the compressor determine what factor to 
select. 



Using the JPEG algorithm on images can result in dramatic compression ratios. With 
little or no degradation, compression ratios of 90–95 percent are routine. Accepting minor 
degradation achieves ratios as high as 98–99 percent. 

Software implementations of the JPEG and MPEG algorithms are still struggling to 
achieve real-time performance. Most multimedia development software that uses this 
type of compression still depends on the use of a coprocessor board to make the 
compression take place in a reasonable amount of time. We are probably only a few years 
away from software-only real-time compression capabilities. 

Programs to Know 

General-purpose data-compression programs have been available only for the past ten 
years or so. It wasn’t until around 1980 that machines with the power to do the analysis 
needed for effective compression started to become commonplace.  

In the Unix world, one of the first general-purpose compression programs was 
COMPACT. COMPACT is a relatively straightforward implementation of an order-0 
compression program that uses adaptive Huffman coding. COMPACT produced good 
enough compression to make it useful, but it was slow. COMPACT was also a 
proprietary product, so it was not available to all Unix users. 

Compress, a somewhat improved program, became available to Unix users a few years 
later. It is a straightforward implementation of the LZW dictionary-based compression 
scheme. compress gave significantly better compression than COMPACT, and it ran 
faster. Even better, the source code to a compress was readily available as a public-
domain program, and it proved quite portable. compress is still in wide use among UNIX 
users, though its continued use is questionable due to the LZW patent held by Unisys. 

In the early 1980s, desktop users of CP/M and MS-DOS systems were first exposed to 
data compression through the SQ program. SQ performed order-0 compression using a 
static Huffman tree passed in the file. SQ gave compression comparable to that of the 
COMPACT program, and it was widely used by early pioneers in desktop 
telecommunications. 

As in the Unix world, Huffman coding soon gave way to LZW compression with the 
advent of ARC. ARC is a general-purpose program that performs both file compression 
and archiving, two features that often go hand in hand. (Unix users typically archive files 
first using TAR, then they compress the entire archive.) ARC could originally compress 
files using run-length encoding, order-0 static Huffman coding, or LZW compression. 
The original LZW code for ARC appears to be a derivative of the Unix compress code. 

Due to the rapid distribution possible using shareware and telecommunications, ARC 
quickly became a de facto standard and began spawning imitators right and left. ARC 
underwent many revisions but has faded in popularity in recent years. Today, if there is a 



compression standard in the DOS world, it is the shareware program PKZIP, written by 
Phil Katz. 

PKZIP is a relatively inexpensive program that offers both superior compression ratios 
and compression speed. At this writing, the current shareware version is PKZip V2.04g 
and can be found on many bulletin boards and online forums. Katz’s company, PKWare, 
also sells a commercial version. Note that V2.04g of PKZIP can create ZIP files that are 
not backward compatible with previous versions. On Compuserve, many forums have 
switched to the new format for files kept in the forum libraries. Usually, a copy of the 
distribution PKZ204.EXE is also found in the forum library. For example, you can find 
this file on 23 different forums on Compuserve. Because Phil Katz has placed the file 
format in the public domain, there are many other archiving/compression utilities that 
support the ZIP format. A search on Compuserve, using the File Finder facility on the 
keyword "PKZIP" resulted in 580 files found, most of which were utilities rather than 
data files. Programs like WinZIP, that integrate with the Windows File Manager, provide 
a modern interface to a venerable file format. 

In DOS, two strong alternatives to PKZIP are LHArc and ARJ. LHARC comes from 
Japan, and has several advantages over other archiving/compression programs. First, the 
source to LHArc is freely available and has been ported to numerous operating systems 
and hardware platforms. Second, the author of LHarc, Haruyasu Yoshizaki (Yoshi), has 
explicitly granted the right to use his program for any purpose, personal or commercial. 

ARJ is a program written by Robert Jung (robjung@world.std.com) and is free for non-
commercial use. It has managed to achieve compression ratios slightly better than the 
best LHArc can offer. It is available for DOS, Windows, Amiga, MAC, OS/2, and 
includes source code. 

On the Macintosh platform, there are also many archiving/compression programs which 
support file formats found on DOS and Unix. In addition to LHArc and ARJ, there are 
programs like ZipIt V1.2 lets you work with ZIP files. However, the predominant 
archiving/compression program is StuffIt, a shareware program written by Raymond Lau. 
On bulletin boards and online services that are geared to Macintosh users, you will find 
more SIT files (StuffIt files) than any other format. Another popular Macintosh format is 
CPT (created by Compact-Pro program) but it is not as widespread as StuffIt. 

In general, the trend is toward greater interoperability among platforms and formats. Jeff 
Gilchrist (jeffg@mi.net) distributes a monthly Archive Comparison Test (ACT) that 
compares sixty different DOS programs for speed and efficiency, working on a variety of 
files (text, binary executables, graphics). If you have Internet access, you can view the 
current copy of ACT by fingering: s0b8@jupiter.sun.csd.unb.ca. You can also view ACT 
using the World-Wide Web at http://www.mi.net/act/act.html. At this writing, one 
promising new archiver on Gilchrist’s ACT list is X1, written by Stig Valentini 
(sv@id.dtu.dk). The current version is 0.90, still in beta stage. This program supports 
thirteen different archive formats, include: ZIP, LHA, ARJ, HA, PUT, TAR+GZIP(TGZ), 
and ZOO. 



As mentioned earlier, you can find archive programs on Compuserve, America Online 
and other online services and bulletin boards. On the Internet, there are several ftp 
repositories. One is at oak.oakland.edu (in the directory /SimTel/msdos/archiver). 
Another is garbo.uwasa.fi, in the directory /pc/arcers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 3 
The Dawn Age: Minimum Redundancy Coding  
In the late 1940s, the early years of Information Theory, the idea of developing efficient 
new coding techniques was just starting to be fleshed out. Researchers were exploring the 
ideas of entropy, information content, and redundancy. One popular notion held that if 
the probability of symbols in a message were known, there ought to be a way to code the 
symbols so that the message would take up less space.  

Remarkably, this early work in data compression was being done before the advent of the 
modern digital computer. Today it seems natural that information theory goes hand in 
hand with computer programming, but just after World War II, for all practical purposes, 
there were no digital computers. So the idea of developing algorithms using base 2 
arithmetic for coding symbols was really a great leap forward. 

The first well-known method for effectively coding symbols is now known as Shannon-
Fano coding. Claude Shannon at Bell Labs and R.M. Fano at MIT developed this method 
nearly simultaneously. It depended on simply knowing the probability of each symbol’s 
appearance in a message. Given the probabilities, a table of codes could be constructed 
that has several important properties: 

•  Different codes have different numbers of bits.  
•  Codes for symbols with low probabilities have more bits, and codes for symbols 
with high probabilities have fewer bits.  
•  Though the codes are of different bit lengths, they can be uniquely decoded.  



The first two properties go hand in hand. Developing codes that vary in length according 
to the probability of the symbol they are encoding makes data compression possible. And 
arranging the codes as a binary tree solves the problem of decoding these variable-length 
codes.  

An example of the type of decoding tree used in Shannon-Fano coding is shown below. 
Decoding an incoming code consists of starting at the root, then turning left or right at 
each node after reading an incoming bit from the data stream. Eventually a leaf of the tree 
is reached, and the appropriate symbol is decoded. 

Figure 3.1 is a Shannon-Fano tree designed to encode or decode a simple five-symbol 
alphabet consisting of the letters A through E. Walking through the tree yields the code 
table: 

Symbol  Code  

A  00  
B  01  
C  10  
D  110  
E  111  

 

 
Figure 3.1  A simple Shannon-Fano tree. 

The tree structure shows how codes are uniquely defined though they have different 
numbers of bits. The tree structure seems designed for computer implementations, but it 
is also well suited for machines made of relays and switches, like the teletype machines 
of the 1950s.  

While the table shows one of the three properties discussed earlier, that of having 
variable numbers of bits, more information is needed to talk about the other two 
properties. After all, code trees look interesting, but do they actually perform a valuable 
service? 



The Shannon-Fano Algorithm 

A Shannon-Fano tree is built according to a specification designed to define an effective 
code table. The actual algorithm is simple:  

1.  For a given list of symbols, develop a corresponding list of probabilities or 
frequency counts so that each symbol’s relative frequency of occurrence is known.  
2.  Sort the lists of symbols according to frequency, with the most frequently 
occuring symbols at the top and the least common at the bottom.  
3.  Divide the list into two parts, with the total frequency counts of the upper half 
being as close to the total of the bottom half as possible.  
4.  The upper half of the list is assigned the binary digit 0, and the lower half is 
assigned the digit 1. This means that the codes for the symbols in the first half 
will all start with 0, and the codes in the second half will all start with 1.  
5.  Recursively apply the steps 3 and 4 to each of the two halves, subdividing 
groups and adding bits to the codes until each symbol has become a 
corresponding code leaf on the tree.  

The Shannon-Fano tree shown in Figure 3.1 was developed from the table of symbol 
frequencies shown next.  

Symbol  Count  

A  15  
B  7  
C  6  
D  6  
E  5  

Putting the dividing line between symbols B and C assigns a count of 22 to the upper 
group and 17 to the lower, the closest to exactly half. This means that A and B will each 
have a code that starts with a 0 bit, and C, D, and E are all going to start with a 1 as 
shown:  

Symbol  Count   
A  15  0  
B  7  0  

First division  
C  6  1  
D  6  1  



E  5  1  

Subsequently, the upper half of the table gets a new division between A and B, which 
puts A on a leaf with code 00 and B on a leaf with code 01. After four division 
procedures, a table of codes results. In the final table, the three symbols with the highest 
frequencies have all been assigned 2-bit codes, and two symbols with lower counts have 
3-bit codes as shown next.  

Symbol  Count     
A  15  0  0   

Second division   

B  7  0  1   
First division   

C  6  1  0   
Third division   

D  6  1  1  0  
 Fourth division  

E  5  1  1  1  

That symbols with the higher probability of occurence have fewer bits in their codes 
indicates we are on the right track. The formula for information content for a given 
symbol is the negative of the base two logarithm of the symbol’s probability. For our 
theoretical message, the information content of each symbol, along with the total number 
of bits for that symbol in the message, are found in the following table.  

Symbol  Count  Info Cont.  Info Bits  

A  15  1.38  20.68  
B  7  2.48  17.35  
C  6  2.70  16.20  
D  6  2.70  16.20  
E  5  2.96  14.82  

The information for this message adds up to about 85.25 bits. If we code the characters 
using 8-bit ASCII characters, we would use 39 × 8 bits, or 312 bits. Obviously there is 
room for improvement.  



When we encode the same data using Shannon-Fano codes, we come up with some pretty 
good numbers, as shown below. 

Symbol  Count  Info Cont.  Info Bits  SF Size  SF Bits  

A  15  1.38  20.68  2  30  
B  7  2.48  17.35  2  14  
C  6  2.70  16.20  2  12  
D  6  2.70  16.20  3  18  
E  5  2.96  14.82  3  15  

With the Shannon-Fano coding system, it takes only 89 bits to encode 85.25 bits of 
information. Clearly we have come a long way in our quest for efficient coding methods. 
And while Shannon-Fano coding was a great leap forward, it had the unfortunate luck to 
be quickly superseded by an even more efficient coding system: Huffman coding.  

The Huffman Algorithm 

Huffman coding shares most characteristics of Shannon-Fano coding. It creates variable-
length codes that are an integral number of bits. Symbols with higher probabilities get 
shorter codes. Huffman codes have the unique prefix attribute, which means they can be 
correctly decoded despite being variable length. Decoding a stream of Huffman codes is 
generally done by following a binary decoder tree.  

Building the Huffman decoding tree is done using a completely different algorithm from 
that of the Shannon-Fano method. The Shannon-Fano tree is built from the top down, 
starting by assigning the most significant bits to each code and working down the tree 
until finished. Huffman codes are built from the bottom up, starting with the leaves of the 
tree and working progressively closer to the root. 

The procedure for building the tree is simple and elegant. The individual symbols are laid 
out as a string of leaf nodes that are going to be connected by a binary tree. Each node 
has a weight, which is simply the frequency or probability of the symbol’s appearance. 
The tree is then built with the following steps: 

•  The two free nodes with the lowest weights are located.  
•  A parent node for these two nodes is created. It is assigned a weight equal to the 
sum of the two child nodes.  
•  The parent node is added to the list of free nodes, and the two child nodes are 
removed from the list.  
•  One of the child nodes is designated as the path taken from the parent node 
when decoding a 0 bit. The other is arbitrarily set to the 1 bit.  



•  The previous steps are repeated until only one free node is left. This free node is 
designated the root of the tree.  

This algorithm can be applied to the symbols used in the previous example. The five 
symbols in our message are laid out, along with their frequencies, as shown:  

15  7  6  6  5  
A  B  C  D  E  

These five nodes are going to end up as the leaves of the decoding tree. When the process 
first starts, they make up the entire list of free nodes.  

The first pass through the tree identifies the two free nodes with the lowest weights: D 
and E, with weights of 6 and 5. (The tie between C and D was broken arbitrarily. While 
the way that ties are broken affects the final value of the codes, it will not affect the 
compression ratio achieved.) These two nodes are joined to a parent node, which is 
assigned a weight of 11. Nodes D and E are then removed from the free list. 

Once this step is complete, we know what the least significant bits in the codes for D and 
E are going to be. D is assigned to the 0 branch of the parent node, and E is assigned to 
the 1 branch. These two bits will be the LSBs of the resulting codes. 

On the next pass through the list of free nodes, the B and C nodes are picked as the two 
with the lowest weight. These are then attached to a new parent node. The parent node is 
assigned a weight of 13, and B and C are removed from the free node list. At this point, 
the tree looks like that shown in Figure 3.2. 
 

 
Figure 3.2  The Huffman tree after two passes. 

On the next pass, the two nodes with the lowest weights are the parent nodes for the B/C 
and D/E pairs. These are tied together with a new parent node, which is assigned a weight 
of 24, and the children are removed from the free list. At this point, we have assigned two 
bits each to the Huffman codes for B, C, D, and E, and we have yet to assign a single bit 
to the code for A.  

Finally, on the last pass, only two free nodes are left. The parent with a weight of 24 is 
tied with the A node to create a new parent with a weight of 39. After removing the two 
child nodes from the free list, we are left with just one parent, meaning the tree is 
complete. The final result looks like that shown in Figure 3.3. 



 
Figure 3.3  The Huffman tree. 

To determine the code for a given symbol, we have to walk from the leaf node to the root 
of the Huffman tree, accumulating new bits as we pass through each parent node. 
Unfortunately, the bits are returned to us in the reverse order that we want them, which 
means we have to push the bits onto a stack, then pop them off to generate the code. This 
strategy gives our message the code structure shown in the following table.  

The Huffman Code Table 
A  0  
B  100 
C  101 
D  110 
E  111 

As you can see, the codes have the unique prefix property. Since no code is a prefix to 
another code, Huffman codes can be unambiguously decoded as they arrive in a stream. 
The symbol with the highest probability, A, has been assigned the fewest bits, and the 
symbol with the lowest probability, E, has been assigned the most bits.  

Note, however, that the Huffman codes differ in length from Shannon-Fano codes. The 
code length for A is only a single bit, instead of two, and the B and C symbols have 3-bit 
codes instead of two bits. The following table shows what effect this has on the total 
number of bits produced by the message.  

Symbol  Count  Shannon-Fano 
Size  

Shannon-Fano 
Bits  

Huffman Size  Huffman 
Bits  

A  15  2  30  1  15  
B  7  2  14  3  21  
C  6  2  12  3  18  
D  6  3  18  3  18  
E  5  3  15  3  15  



This adjustment in code size adds 13 bits to the number needed to encode the B and C 
symbols, but it saves 15 bits when coding the A symbol, for a net savings of 2 bits. Thus, 
for a message with an information content of 85.25 bits, Shannon-Fano coding requires 
89 bits, but Huffman coding requires only 87.  

In general, Shannon-Fano and Huffman coding are close in performance. But Huffman 
coding will always at least equal the efficiency of Shannon-Fano coding, so it has 
become the predominant coding method of its type. Since both algorithms take a similar 
amount of processing power, it seems sensible to take the one that gives slightly better 
performance. And Huffman was able to prove that this coding method cannot be 
improved on with any other integral bit-width coding stream. 

Since D. A. Huffman first published his 1952 paper, “A Method for the Construction of 
Minimum Redundancy Codes,” his coding algorithm has been the subject of an 
overwhelming amount of additional research. Information theory journals to this day 
carry numerous papers on the implementation of various esoteric flavors of Huffman 
codes, searching for ever better ways to use this coding method. Huffman coding is used 
in commercial compression programs, FAX machines, and even the JPEG algorithm. The 
next logical step in this book is to outline the C code needed to implement the Huffman 
coding scheme. 

Huffman in C 

A Huffman coding tree is built as a binary tree, from the leaf nodes up. Huffman may or 
may not have had digital computers in mind when he developed his code, but 
programmers use the tree data structure all the time.  

Two programs used here illustrate Huffman coding. The compressor, HUFF-C, 
implements a simple order-0 model and a single Huffman tree to encode it. HUFF-E 
expands files compressed using HUFF-C. Both programs use a few pieces of utility code 
that will be seen throughout this book. Before we go on the actual Huffman code, here is 
a quick overview of what some of the utility modules do. 

BITIO.C 

Data-compression programs perform lots of input/output (I/O) that does reads or writes of 
unconventional numbers of bits. Huffman coding, for example, reads and writes bits one 
at a time. LZW programs read and write codes that can range in size from 9 to 16 bits. 
The standard C I/O library defined in STDIO.H only accommodates I/O on even byte 
boundaries. Routines like putc() and getc() read and write single bytes, while fread() and 
fwrite() read and write whole blocks of bytes at a time. The library offers no help for 
programmers needing a routine to write a single bit at a time.  

To support this conventional I/O in a conventional way, bit-oriented I/O routines are 
confined to a single source module, BITIO.C. Access to these routines is provided via a 



header file called BITIO.H, which contains a structure definition and several function 
prototypes. 

Two routines open files for bit I/O, one for input and one for output. As defined in 
BITIO.H, they are 

BIT_FILE *OpenInputBitFile( char *name ); 
BIT_FILE *OpenOutputBitFile ( char *name ); 

These two routines return a pointer to a new structure, BIT_FILE. BIT_FILE is also 
defined in BITIO.H as shown:  

typedef struct bit_file { 
     FILE *file; 
     unsigned char mask; 
     int rack; 
     int pacifier_counter; 
} BIT_FILE: 

OpenInputBitFile() or OpenOutputBitFile() perform a conventional fopen() call and store 
the returned FILE structure pointer in the BIT_FILE structure. The other two structure 
elements are initialized to their startup values, and a pointer to the resulting BIT_FILE 
structure is returned.  

In BITIO.H, rack contains the current byte of data either read in from the file or waiting 
to be written out to the file. mask contains a single bit mask used either to set or clear the 
current output bit or to mask in the current input bit. 

The two new structure elements, rack and mask, manage the bit-oriented aspect of a most 
significant bit in the I/O byte gets or returns the first bit, and the least significant bit in the 
I/O byte gets or returns the last bit. This means that the mask element of the structure is 
initialized to 0x80 when the BIT_FILE is first opened. During output, the first write to 
the BIT_FILE will set or clear that bit, then the mask element will shift to the next. Once 
the mask has shifted to the point at which all the bits in the output rack have been set or 
cleared, the rack is written out to the file, and a new rack byte is started.  

Performing input from a BIT_FILE is done in a similar fashion. The mask is first set to 
0x80, and a single byte from the file is read into the rack element. Each call to read a bit 
from the file masks in a new bit, then shifts the mask over to the next lower significant bit. 
Eventually, all bits in the input rack have been returned, and the input routine can read in 
a new byte from the input file. 

Two types of I/O routines are defined in BITIO.C. The first two routines read or write a 
single bit at a time. The second two read or write multiple bits, up to the size of an 
unsigned long. These four routines have the following ANSI prototype in BITIO.H: 

void            OutputBit( BIT_FILE *bit_file, int bit ); 
void            OutputBits( BIT_FILE *bit_file, 



                            unsigned long code, int count); 
int             InputBit( BIT_FILE *bit_file ); 
unsigned long   InputBits( BIT_FILE *bit_file, int bit_count ); 

Specialized routines open a BIT_FILE, and two specialized routines close a BIT_FILE. 
The output routine makes sure that the last byte gets written out to the file. Both the input 
and output routines need to close their files, then free up the BIT_FILE structure 
allocated when the file was opened. The BIT_FILE routines used to close a file are 
defined in BITIO.H with these ANSI prototypes:  

void    CloseInputBitFile( BIT_FILE *bit_file ); 
void    CloseOutputBitFile( BIT_FILE *bit_file ); 

The input and output routines in BITIO.H also have a pacifier feature that can be useful 
in testing compression code. Every BIT_FILE structure has a pacifier_counter that gets 
incremented every time a new byte is read in or written out to the corresponding file. 
Once every 2,048 bytes, a single character is written to stdout. This helps assure the 
impatient user that real work is being done. On MS-DOS systems, it also helps ensure 
that the user can break out of the program if it does not appear to be working correctly.  

The header file and code for BITIO.H is shown next:. 

/******************** Start of BITIO.H **********************/ 
 
#ifndef _BITIO_H 
#define _BITIO_H 
#include <stdio.h> 
 
typedef struct bit_file { 
     FILE *file; 
     unsigned char mask; 
     int rack; 
     int pacifier_counter; 
} BIT_FILE; 
 
#ifdef __STDC__ 
 
BIT_FILE*     OpenInputBitFile( char *name ); 
BIT_FILE*     OpenOutputBitFile( char *name ); 
void          OutputBit( BIT_FILE *bit_file, int bit ); 
void          OutputBits( BIT_FILE *bit_file, 
                          unsigned long code, int count ); 
int           InputBit( BIT_FILE *bit_file ); 
unsigned long InputBits( BIT_FILE *bit_file, int bit_count ); 
void          CloseInputBitFile( BIT_FILE *bit_file ); 
void          CloseOutputBitFile( BIT_FILE *bit_file ); 
void          FilePrintBinary( FILE *file, unsigned int code, int bits); 
 
#else /* __STDC__ */ 
 
BIT_FILE*     OpenInputBitFile(); 
BIT_FILE*     OpenOutputBitFile(); 
void          OutputBit(); 



void          OutputBits(); 
int           InputBit(); 
unsigned long InputBits(); 
void          CloseInputBitFile(); 
void          CloseOutputBitFile(); 
void          FilePrintBinary(); 
 
#endif /* __STDC__ */ 
 
#endif /* _BITIO_H */ 
 
/********************** End of BITIO.H *********************/ 
 
/******************** Start of BITIO.C ********************/ 
 
/* 
* This utility file contains all of the routines needed to implement 
* bit oriented routines under either ANSI or K&R C.  It needs to be 
* linked with every program used in the book. 
*/ 
#include <stdio.h> 
#include <stdlib.h> 
#include "bitio.h" 
#include "errhand.h" 
 
BIT_FILE *OpenOutputBitFile( name ) 
char *name; 
{ 
     BIT_FILE *bit_file; 
 
     bit_file = (BIT_FILE *) calloc( 1, sizeof( BIT_FILE ) ); 
     if ( bit_file == NULL ) 
          return( bit_file ); 
     bit_file->file = fopen( name, "rb" ); 
     bit_file->rack = 0; 
     bit_file->mask = 0x80; 
     bit_file->pacifier_counter = 0; 
     return( bit_file ); 
} 
 
BIT_FILE *OpenInputBitFile( name ) 
char *name; 
{ 
     BIT_FILE *bit_file; 
 
     bit_file = (BIT_FILE *) calloc( 1, sizeof( BIT_FILE ) ); 
     if ( bit_file == NULL ) 
          return( bit_file ); 
     bit_file->file = fopen( name, "rb" ); 
     bit_file->rack = 0; 
     bit_file->mask = 0x80; 
     bit_file->pacifier_counter = 0; 
     return( bit_file ); 
} 
 
void CloseOutputBitFile( bit_file ) 
BIT_FILE *bit_file; 



{ 
 
     if ( bit_file->mask != 0x80 ) 
      if ( putc( bit_file->rack, bit_file->file ) != bit_file->rack ) 
           fatal_error( "Fatal error in CloseBitFile!\n" ); 
     fclose( bit_file->file ); 
     free( (char *) bit_file ); 
} 
 
void CloseInputBitFile( bit_file ) 
BIT_FILE *bit_file; 
{ 
     fclose( bit_file->file ); 
     free( (char*) bit_file ); 
} 
void OutputBit( bit_file, bit ) 
BIT_FILE *bit_file; 
int bit; 
{ 
   if ( bit ) 
        bit_file->rack | = bit_file->mask; 
   bit_file->mask >>= 1; 
   if ( bit_file->mask == 0 ) { 
   if ( putc( bit_file->rack, bit_file->file ) != bit_file->rack ) 
          fatal_error( "Fatal error in OutputBit!\n" ); 
     else 
          if ( ( bit_file->pacifier_counter++ & 4095 ) == 0 ) 
               putc( '.', stdout ); 
     bit_file->rack = 0; 
     bit_file->mask = 0x80; 
    } 
} 
void OutputBits( bit_file, code, count ) 
BIT_FILE *bit_file; 
unsigned long code; 
int count; 
{ 
  unsigned long mask; 
 
  mask = 1L << ( count - 1 ); 
  while ( mask != 0) { 
       if ( mask & code ) 
            bit_file->rack | = bit_file->mask; 
  bit_file->mask >>= 1; 
  if ( bit_file->mask == 0 ) { 
  if ( putc( bit_file->rack, bit_file->file ) != bit_file->rack ) 
        fatal_error( "Fatal error in OutputBit!\n" ); 
   else if ( ( bit_file->pacifier_counter++ & 2047 ) == 0 ) 
          putc( '.', stdout ); 
          bit_file->rack = 0; 
          bit_file->mask = 0x80; 
     } 
     mask >>= 1; 
   } 
} 
 
int InputBit( bit_file ) 



BIT_FILE *bit_file; 
{ 
     int value; 
 
     if ( bit_file->mask == 0x80 ) { 
          bit_file->rack = getc( bit_file->file ); 
          if ( bit_file->rack == EOF ) 
               fatal_error( "Fatal error in InputBit!\n" ); 
          if ( ( bit_file->pacifier_counter++ & 2047 ) == 0 ) 
                 putc( '.', stdout ); 
     } 
     value = bit_file->rack & bit_file->mask; 
     bit_file->mask >>= 1; 
     if ( bit_file->mask = 0 ) 
          bit_file->mask = 0x80; 
     return ( value ? 1 : 0 ); 
     } 
 
unsigned long InputBits( bit_file, bit_count ) 
BIT_FILE *bit_file; 
int bit_count; 
{ 
 
     unsigned long mask; 
     unsigned long return_value; 
 
     mask = 1L << ( bit_count - 1 ); 
     return_value = 0; 
     while ( mask != 0) { 
 
          if ( bit_file->mask == 0x80 ) { 
               bit_file->rack = getc( bit_file->file ); 
               if ( bit_file->rack == EOF ) 
                    fatal_error( "Fatal error in InputBit!\n" ); 
          if ( ( bit_file->pacifier_counter++ & 2047 ) == 0 ) 
               putc( '.', stdout ); 
          } 
          if ( bit_file->rack & bit_file->mask ) 
               return_value |=mask; 
          mask >>= 1; 
          bit_file->mask >>= 1; 
          if ( bit_file->mask = 00 ) 
               bit_file->mask = 0x80; 
     } 
     return( return_value ); 
} 
void FilePrintBinary( file, code, bits ) 
FILE *file; 
unsigned int code; 
int bits; 
{ 
     unsigned int mask; 
     mask = 1 << ( bits - 1 ): 
     while ( mask != 0 ){ 
         if ( code & mask ) 
             fputc( '1', file ); 
         else 



             fputc( '0', file); 
         mask >>= 1; 
     } 
} 
 
/********************** End of BITIO.C **********************/ 
 

A Reminder about Prototypes 

The code in this book works on both Unix K&R and the more modern MS-DOS 
compilers. This affects the code in this book mainly in the area of function parameters in 
both prototypes and the function body itself. For the function body, all code in this book 
will use old-fashioned parameter specifications like this:  

int main( argc, argv ) 
int argc; 
char *argv[]; 
{ 
 
... 

This is the only method of parameter declaration acceptable to K&R compilers, and as 
such it has the blessing of the ANSI standard. A few compilers (Microsoft C 6.0 at 
Warning Level 4, for example) will issue a warning when it encounters this type of 
function declaration, so be prepared to ignore those warnings. Declaring function 
parameters in this method will generally have no effect on code reliability or readability, 
so using the K&R style should be considered a benign anachronism.  

Parameters in function declarations present a little more of a problem. The ANSI C 
specification will accept old style K&R function declarations (such as int main();), but 
there are good reasons to specify all function arguments in the declaration. When using 
full prototyping—as in int main( int argc, char *argv[] );—the compiler checks for 
correct parameter passing when it encounters a call to a function. This helps avoid one of 
the most commonplace C coding mistakes; incorrect parameter types. 

To use this prototyping, and at the same time to stay compatible with K&R compilers, all 
function prototypes are given in two forms: a K&R-compatible prototype and a full ANSI 
C prototype. The ANSI C prototypes are selected through a check for __STDC__, a 
predefined macro defined when a compiler conforms to the ANSI C standard. So the 
prototype for a set of functions in a header file will look something like this: 

#ifdef __STDC__ 
 
int main( int argc, char *argv[] ); 
FOO *open_foo( char *name ); 
 
#else /* __STDC__ */ 
 
int main(); 



FOO *open_foo(); 
 
#endif /* __STDC__ */ 

This compromise approach definitely hurts readability, and it is probably not the way to 
go during code development. But once a set of routines is working properly and not likely 
to be changed, this type of header file will work fine.  

ANSI C compiler users will find that a problem with this header file crops up with 
numerous MS-DOS compilers. Compilers such as Microsoft C or Borland C++ are ANSI 
C compilers, but by default they include a number of language extensions, such as far 
pointers, alternate calling conventions, and so on. When these language extensions are 
enabled (as they are by default), __STDC__ is not defined, since the compiler is not 
operating strictly as an ANSI C compiler. This means that the correct function prototypes 
will not be invoked. 

The solution to this problem is to compile the code in this book with the compiler in 
ANSI C mode. Put the compiler in this mode generally by disabling extensions. 
Microsoft C accomplishes this from the command line with the /Za switch. Borland C++ 
uses the -A switch to disable C extensions. 

To adapt this code for a specific use on a specific compiler, you may want to eliminate 
the “#ifdef __STDC__” lines in the header file and code. As more and more compilers 
use ANSI C prototypes and parameter definitions, this portability machinery will become 
less and less useful. 

MAIN-C.C AND MAIN-E.C 

Another piece of utility code used throughout this book is the “main()” program for the 
compression and expansion programs. Any piece of compression code needs to be 
plugged into a main program that accepts command-line arguments, opens files, calls the 
compression routines, then closes the files. For simplicity, I have created two versions of 
this code: one for the compression program (MAIN-C.C) and one for the expansion 
program (MAIN-E.C).  

Both MAIN-C.C and MAIN-E.C expect to find a compression or expansion routine in 
another file, a help routine to explain command-line parameters, and an external string 
with the name of the compression technique being used. The declarations for the 
functions and name are found in MAIN.H. MAIN.H should be included in the 
compression module to ensure that the routines are properly typed. MAIN.H is shown 
next. 

The idea behind these two routines is that the infrastructure of a compression test 
program should not have to be rewritten every time a new compression module is coded. 
A new routine should just have to interface with the existing compression code. 

/********************** Start of MAIN.H ***********************/ 



 
#ifndef _MAIN_H 
#define _MAIN_H 
 
#ifdef _STDC_ 
void CompressFile( FILE *input, BIT_FILE *output, int argc, char 
*argv[] ); 
void ExpandFile( BIT_FILE *input, FILE *output, int argc, char 
*argv[] ); 
 
#else /* __STDC__ */ 
 
void CompressFile(); 
void ExpandFile(); 
 
#endif /* __STDC__ */ 
 
extern char *Usage; 
extern char *CompressionName; 
#endif /* _MAIN_H */ 
 
/************************* End of MAIN.H ************************/ 

In MAIN-C.C, a compression module supplies three things: a Usage string, which can 
print out a list of parameters, etc.; a CompressionName string, which lets the MAIN-C.C 
program print out the compression method; and a CompressFile() routine, which actually 
compresses the file. In this chapter, these routines are in a file called HUFF.C, which 
implements an order 0 model with a Huffman coder. MAIN-C.C is shown below.  

/*********************** Start of MAIN-C.C **********************/ 
/* 
* This is the driver program used when testing compression algorithms. 
* In order to cut back on repetitive code, this version of main is 
* used with all of the compression routines.  In order to turn it into 
* a real program, it needs to have another module that supplies one 
* routine and two strings, namely: 
* 
*    void CompressFile( FILE *input, BIT_FILE *output, 
*                        int argc, char *argv ); 
*    char *Usage; 
*    char *CompressionName; 
* 
* The main() routine supplied here has the job of checking for valid 
* input and output files, opening them, and then calling the 
* compression routine.  If the files are not present, or no arguments 
* are supplied, it prints out an error message, which includes the 
* Usage string supplied by the compression module.  All of the 
* routines and strings needed by this routine are defined in the 
* main.h header file. 
* 
* After this is built into a compression program of any sort, the 
* program can be called like this: 
* 
*    main-c infile outfile [ options ] 
* 



*/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include "bitio.h" 
#include "errhand.h" 
#include "main.h" 
#ifdef ___STDC___ 
 
void usage_exit( char *prog_name ); 
void print_ratios( char *input, char *output ); 
long file_size( char *name ); 
 
#else 
 
void usage_exit(); 
void print_ratios(); 
long file_size(); 
 
#endif 
 
int main( argc, argv ) 
int argc; 
char *argv[]; 
{ 
     BIT_FILE *ouput; 
     FILE *input; 
 
     setbuf( stdout, NULL ); 
     if ( argc < 3 ) 
          usage_exit( argv[ 0 ] ); 
     input = fopen(argv [ 1 ], "rb" ); 
     if ( input == NULL ) 
          fatal_error( "Error opening %s for input/n", argv[ 1 ] ); 
     output = OpenOutputBitFile( argv[ 2 ] ); 
     if ( output == NULL ) 
          fatal error( "Error opening %s for input/n", argv[ 2 ] ); 
     printf( "\nCompressing %s to %s\n", argv[ 1 ], argv[ 2 ] ); 
     printf( "Using %s\n, CompressionName ); 
     argc -= 3; 
     argv += 3; 
     CompressFile( input, output, argc, argv ); 
     CloseOutputBitFile( output ); 
     fclose( input ); 
     print_ratios( argv[ 1 ], argv[ 2 ] ); 
     return( 0 ); 
} 
 
/* 
* This routine just wants to print out the usage message that is 
* called for when the program is run with no parameters.  The first 
* part of the Usage statement is supposed to be just the program 
* name. argv[ 0 ] generally holds the fully qualified path name 
* of the program being run.  I make a half-hearted attempt to strip 
* out that path info and file extension before printing it.  It should 
* get the general idea across. 
*/ 



void usage_exit( prog_name ) 
char *prog_name; 
{ 
     char *short_name; 
     char *extension; 
 
     short_name = strrchr( prog_name, '\\' ); 
     if (short_name == NULL ) 
          short_name = strrchr( prog_name, '/' ); 
     if (short_name == NULL ) 
          short_name = strrchr( prog_name, ':' ); 
     if (short_name != NULL ) 
          short_name++; 
     else 
          short_name = prog_name; 
     extension = strrchr( short_name, '.' ); 
     if ( extension != NULL ) 
          *extension = '\0'; 
     printf( "\nUsage: %s %s\n", short_name, Usage ); 
     exit( 0 ); 
} 
 
/* 
* This routine is used by main to get the size of a file after it has 
* been closed.  It does all the work, and returns a long.  The main 
* program gets the file size for the plain text, and the size of the 
* compressed file, and prints the ratio. 
*/ 
#ifndef SEEK_END 
#define SEEK_END 2 
#endif 
 
long file_size( name ) 
char *name; 
{ 
     long eof ftell; 
     FILE *file; 
 
     file = fopen( name, "r"); 
     if ( file == NULL ) 
          return( OL ); 
     fseek( file, OL, SEEK_END ); 
     eof_ftell = ftell( file ); 
     fclose( file ); 
     return( eof_ftell ); 
} 
 
/* 
* This routine prints out the compression ratios after the input and 
* output files have been closed. 
*/ 
void print_ratios( input, output ) 
char *input; 
char *output; 
{ 
     long input_size; 
     long output_size; 



     int ratio; 
     input_size = file_size( input ); 
     if ( input_size == 0 ) 
         input_size = 1; 
     output_size = file_size * 100L / input_size ); 
     ratio = 100 - (int) ( output_size * 100L / input_size ); 
     printf( "\nInput bytes:        %ld\n", input_size ); 
     printf( "Output bytes:      %ld/n", output_size ); 
     if ( output_size == 0 ) 
         output_size = 1; 
     printf( "Compression ratio:  %d%%\n", ratio ); 
 
/*********************** End of MAIN-C.C *************************/ 

MAIN-C.C 

There are a few expectations about how MAIN-C.C will run. MAIN-C.C is called to 
compress an input file supplied on the command line and send the compressed output to 
another file, also supplied on the command line. Thus, the basic command-line 
invocation of MAIN-C.C is MAIN-C input-file output-file. If the user invokes MAIN-
C.C without any arguments, a simple usage statement prints out. The usage statement 
includes the usage string supplied by the compression module.  

If two likely looking file names are on the command line, MAIN-C.C tries to open them 
both. The input file is opened as a standard file specified in STDIO.H, using fopen(). The 
output file is opened as a BIT_FILE, as defined in BITIO.H. If either file doesn’t open, 
an error message is printed out and the program exits. If both files open, the next step is 
to call the compression routine. 

MAIN-C.C expects the compression routine to be named CompressFile(). This routine is 
called with four arguments. The first two are pointers to the file structure for the input file 
and a pointer to the BIT_FILE structure for the output file. Finally, the updated values for 
argc and argv are passed to the compression routine. The values for argc and argv will 
have been adjusted to go past argv[0], which should be the program name, as well as 
argv[1] and argv[2], the names of the input and output files. The compression program 
can then scan the remaining arguments for any arguments specific to that particular 
compression routine. After the compression routine has finished, it returns to MAIN-C.C, 
which closes down the files and exits. 

MAIN-E.C is the converse program to MAIN-C.C. It takes two arguments as well, but 
this time the input file is the compressed file and the output file is destined to be the 
uncompressed clear text file. Just like MAIN-C.C, it checks to be sure there are at least 
two arguments, then tries to open the two files. If there aren’t two arguments, a usage 
message is printed. If either of the files fails to open, an error message is printed. MAIN-
E.C is listed below. 

/***********************Start of MAIN-E.C***********************/ 
* This driver program tests compression algorithms.  To cut back on 
* repetitive code, this version of main is used with all the expansion 



* routines.  The main() routine supplied here checks for valid input 
and 
* output files, opens them, then calls the compression routine. 
* 
*/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include "bitio.h" 
#include "errhand.h" 
#include "main.h" 
 
#ifdef__STDC__ 
void usage_exit( char *prog_name ); 
#else 
void usage_exit(); 
#endif 
 
int main( argc, argv ) 
int argc; 
char *argv[]; 
{ 
     FILE *output; 
     BIT_FILE *input; 
 
     setbuf( stdout, NULL ); 
     if  ( argc < 3 ) 
        usage_exit( argv[ 0 ] ); 
     input = OpenInputBitFile( argv[ 1 ] ); 
     if ( input == NULL ) 
          fatal_error( "Error opening %s for input\n", argv[ 1 ] 
     output = fopen( argv[ 2 ], "wb" ); 
     if ( output == NULL ) 
          fatal_error( "Error opening %s for output\n", argv[ 2 ] 
     printf( "\nExpanding %s to %s for output\n", argv[ 2 ] ); 
     printf( "Using %\n", CompressionName ); 
     argc -= 3; 
     argv += 3; 
     ExpandFile( input, output, argc, argv ); 
     CloseInputBitFile( input ); 
     fclose( output ); 
     putc( '\n', stdout ); 
     return( 0 ); 
} 
 
/* 
* This routine wants to print out the usage message called for when the 
* program is run with no parameters.  The first part of the Usage state 
* ment is supposed to be just the programname. argv[ 0 ] generally 
holds 
* the fully qualified path name of the program being run. 
*/ 
void usage_exit( prog_name ) 
char *prog_name; 
} 
     char *short_name; 
     char *extension; 



 
     short_name = strrchr( prog_name, '\\' ); 
     if ( short_name = = NULL ) 
          short_name = = strrchr( prog_name, '/' ); 
     if ( short_name = = NULL ) 
          short_name = strrchr( prog_name, ':' ); 
     if ( short_name != NULL ) 
         short_name++; 
     else 
        short_name = prog_name; 
     extension = strrchr( short_name, '.' ); 
     if ( extension != NULL ) 
          *extension = '\0'; 
     printf( "\nUsage: %s %s\n", short_name, Usage ); 
     exit( 0 ); 
} 
/********************** End of MAIN-E.C**************************/ 

ERRHAND.C 

One additional routine helps simplify the code. A production version of a program 
generally needs a somewhat sophisticated error-handling mechanism. In particular, it is 
important to let the end user know what is happening, clean up any files that may have 
been only partially processed, and restore any system settings that may have been 
changed.  

In this book, our interest in compression concentrates on testing for accuracy, speed, and 
compression ratios. Because of this, we have created a simple universal fatal-error 
handler. The error handler is defined in ERRHAND.H: 

/********************** Start of ERRHAND.H **********************/ 
 
     #ifndef _ERRHAND_H 
     #define _ERRHAND_H 
 
     #ifdef ___STDC___ 
 
     void fatal_error( char *fmt, ... ); 
 
     #else /* ___STDC___ */ 
 
     void fatal_error(); 
 
     #endif /* ___STDC___ */ 
 
     #endif /* _ERRHAND_H */ 
 
/********************** End of ERRHAND.H *************************/ 

The fatal-error handler is called when an unrecoverable error occurs in the program. It 
has the same syntax as printf, which means it can be passed a format string and 
arguments to format and print out.  



/************************ Start of ERRHAND.C ***********************/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <stdarg.h> 
#include "errhand.h" 
 
#ifdef __STDC__ 
void fatal_error( char *fmt, ... ) 
#else 
#ifdef __UNIX__ 
void fatal_error( fmt ) 
char *fmt; 
va_dcl 
#else 
void fatal_error( fmt ) 
#endif 
#endif 
{ 
 
     va_list argptr; 
 
     va_start( argptr, fmt ); 
     printf( "Fatal error: " ); 
     vprintf( fmt, argptr  ); 
     va_end( argptr ); 
     exit( -1 ); 
} 
 
/************************ End of ERRHAND.C ***********************/ 

Into the Huffman Code 

With the infrastructure code in place, all we need to do to create a program that 
demonstrates Huffman coding is to write two routines, CompressFile() and ExpandFile(), 
and a couple of strings that describe the name of the compression method and program 
usage. The code for this is found in HUFF.C.  

To build the Huffman decoding tree, we need to create a data structure that models the 
tree on the computer. In our previous examples, each node on the tree had several pieces 
of information: first, the weight associated with it; second, pointers to two child nodes, 
one associated with the 0 bit and one associated with the 1 bit. Finally, leaf nodes had the 
value of the symbol associated with the leaf. 

The data structure used in this program to model the Huffman tree was built around the 
node structure: 

typedef struct tree_node { 
     unsigned int count; 
     unsigned int saved_count; 
     int child_0; 
     int child_1; 
} NODE; 



The first thing to notice about this structure is that there is no information about the value 
of a leaf node. This is because the node structures are allocated as an array of 514 nodes. 
The lower nodes are all assigned to be leaf nodes, and the upper nodes become internal 
nodes. The information about the value of a leaf is encoded based on the position of the 
node in the array.  

Instead of having 256 symbols in our alphabet for this program, we actually have 257. 
Values 0 through 255 are reserved for the normal range of bytes that fit into a character. 
The remaining symbol value of 256 is reserved for the end-of-stream indicator. This is 
the last code written out to the stream, and it indicates that no more data will be arriving. 
Because of the bit-oriented nature of compressed data, it is not ordinarily a simple matter 
to determine when you have reached an end-of-file state. Handling it with a special code 
for end-of-stream is one method for getting around this. Another would be to encode the 
length of the file as a prefix to the compressed data. 

With 257 symbols to deal with, we know in advance the largest possible size of the 
Huffman tree. If all 257 symbols are in use, we will have 256 internal nodes, meaning 
that we have to allocate an array of 513 node structures. In the program, I actually 
allocate 514 and use the last one as a dummy value for comparisons when building the 
tree. 

Counting the Symbols 

To build the tree, I first calculate the relative frequencies of the symbols. In HUFF.C, I 
set up an array of 256 longs and count the occurrences of every character in the file, from 
the start to the end. The position of the file input pointer is saved when the count starts 
and is restored when it is done. All this takes place in function count_bytes().  

Though I start with 32-bit unsigned long counts, I scale the counts back significantly in 
module scale_counts. Scale_counts() finds the maximum count for any symbol in the file, 
then develops a scaling factor to make that count and all the rest of the counts fit in a 
single unsigned character. These counts are then copied into the weight elements of the 
first 257 node elements. 

There are several good reasons for scaling back the counts. First, by limiting any 
symbol’s weight to an 8-bit unsigned character, I can confine all of the math I perform 
when building the tree to 16-bit unsigned integers. This helps the program run a little 
faster, and it cuts back on the amount of storage required for the node array. It also limits 
the maximum size of a Huffman code as well, ensuring that it will fit in a 16-bit unsigned 
integer. 

Saving the Counts 

For the expansion program to correctly expand the Huffman encoded bit stream it will be 
receiving, it needs a copy of the Huffman tree identical to the one used by the encoder. 



This means that the tree, or its equivalent, must be passed as a header to the file so the 
expander can read it in before it starts to read Huffman codes.  

The easiest way for the expansion program to get this data would probably be to store the 
entire node array as a preamble to the compressed data. This would work well and would 
not be too hard for the compressor to do. An alternative method that occupies far less 
space in the compressed file, however, is to transmit the symbol counts to the expander. 
Since the Huffman tree is built up in an unambiguous manner from the symbol counts, it 
stands to reason that the expansion program doesn’t need more to do its job. And since 
the scaled count array will be only 256 bytes, compared to the Huffman tree’s 4K bytes, 
there is good reason to choose this. 

I elected to try to cut down on the amount of data to be passed even further. Under many 
circumstances, the number of counts that stay at zero is considerable. With ASCII text 
files, such as program listings, there will generally be only around 100 symbols in use out 
of the possible 256. It seems a waste to transmit all those zero counts when they aren’t 
necessary. To make this happen, I use a slightly more complicated format for the header. 

The header used in HUFF.C that contains the symbol counts consists of a series of “count 
run” definitions, followed by a 0 terminator. A count-run definition consists of the value 
of the first symbol in the run, followed by the value of the last symbol in the run, 
followed by the counts for all of the symbols in the run from first to last. This is repeated 
until each run has been stored in the output file. When there is no more data to store, a 
first value of zero is written out to the file. Note that a value of zero for the very first run 
is not treated as an end of data. 

For a typical ASCII file, the start of the compressed file might look something like Figure 
3.4. 



 
Figure 3.4  The start of a typical compressed ASCII file. 

This symbol count format takes a fair amount of work to generate, performed in 
output_counts() in HUFF.C. Reading in the symbols counts is much simpler, since the 
work has been done in advance. Reading the counts in from the compressed file during 
expansion is done in the input_counts() routine.  

Building the Tree 

Whether compressing or expanding, once the counts have been loaded, it is time to build 
the Huffman tree. In HUFF.C, this is done in a function called build_tree(). Because 
some care was taken when creating the data structure, the actual process of creating the 
tree is the simple matter of sitting in a loop and combining the two free nodes with the 
lowest weight into a new internal node with the combined weight of the nodes. Once only 
one free node is left, the tree is done, and the free node is the root of the tree.  

The logic of the build_tree() routine is fairly simple. When the routine is first entered, all 
nodes below 257 have a count value set to their frequency in the file. A nonzero value 
here means that this is an active node. 

build_tree() also sets up a special node used as a straw man for comparison purposes. 
Node 513, which will never be used, is set to have a count value of 65535, which no 
normal node can ever exceed. When searching for the two minimum nodes, I will start by 
setting the minimum node to 513, knowing that any valid active node will fall below its 
value. 

Finally, before the comparisons start, an index to the next free node’s initialized. The 
node array is in use from 0 to 256, so the next free node will be at 257. 



After things have been set up, build_tree() goes into an infinite loop. On each pass 
through the loop, build_tree tries to find the two active nodes with the lowest weights. If 
only one node is found, the tree is complete and the loop is exited. If there are two good 
minimum values, a new node to the tree can be created. This new node is set up using the 
next_free node index. Its two child pointers are set to point to the two minimum nodes 
found before, and its weight is their sum. The two minimum nodes are now marked as 
being inactive by setting their weights to 0. Nodes with a weight of 0 are considered to be 
unused and will never again be selected to represent a minimum. 

One piece of inefficient code is deliberately left in build_tree(). There is an extra member 
in the node structure called saved_count. When a node is taken off the active list by 
having its count set to zero, the previous count is stored in saved_count. Later, if the user 
has selected the -d option in order to print out the model, the saved_count can be printed. 
This helps when debugging the program and when trying to understand how the tree 
works. 

Using the Tree 

During the expansion phase, it is easy to see how to use the Huffman tree. Starting at the 
root node, a single bit at a time is read in by the decoder. If the bit is a 0, the next node is 
the one pointed to by the child_0 index. If the bit is a 1, the next node is the one pointed 
to by the child_1 index. If the new node is 256 or less, we have reached a leaf of the tree 
and can output the corresponding symbol. If the symbol was the special end-of-stream 
symbol, we can exit instead of sending it out. This is what is done in the expand_node() 
function. It is just a few lines of code, and it decodes a compressed Huffman code file 
with relative ease.  

Compressing the same file is a bit harder. Essentially, we want to work down the tree, 
outputting a 1 or a 0 bit at each node, till we get to the appropriate leaf node. 
Unfortunately, the tree structure makes this impossible. When we start at the root node, 
we have no idea whether to take the 0 or the 1 branch to arrive at a particular symbol. 

One way to solve this problem when building the tree would be to add a parent member 
to the node structure. When combining the two minimum nodes to form a new internal 
node, each minimum node would have its parent structure set to point to the new node. 
With this new node, we could start at the leaf node and work our way up through the tree 
toward the root. The only problem with this procedure is that we would accumulate bits 
in reverse order as we went up the tree. We would have to rack them up till we reached 
the root node, then put them out in reverse order. 

Fortunately, there is a better way to do this. Rather than trying to use the tree to code our 
symbols when compressing a file, we could build a code table by recursively traversing 
the entire tree one time only. This creates a table of codes, one for each symbol, along 
with the length of each code. Once the table is built, the file can be encoded by simply 
outputting the appropriate code for every character in the input file. 



The code to convert the tree data structures into a table of codes is very simple, thanks to 
a recursive algorithm. We start at the root node of the tree with a zero. Then we begin 
working down the individual branches of the tree, adding a one or a zero to the code each 
time we travel down a branch. Whenever we reach a leaf, we store the code values for 
that leaf in the code array and back up to the previous node, where we can start searching 
down the other side of the tree. 

The code to accomplish this is in function convert_tree_to_code(). This routine takes a 
fair amount of work to create the code table, but once it is done the actual file 
compression is very easy. 

The Compression Code 

The code for Huffman compression and decompression is shown in the listing below. 
This single file, HUFF.C, is about 500 lines long, of which probably 30 percent is 
comments. So we are able to implement a static dictionary Huffman compressor in only 
about 300 lines of code. The actual amount of code could easily be crunched down to a 
number much less than that. The small code and storage requirements make Huffman 
coding ideal for applications where both memory and CPU storage are at a premium.  

/********************** Start of HUFF.C  *************************/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <ctype.h> 
#include "bitio.h" 
#include "errhand.h" 
#include "main.h" 
 
/* 
* The NODE structure is a node in the Huffman decoding tree.  It has a 
* count, which is its weight in the tree, and the node numbers of its 
* two children.  The saved_count member of the structure is only 
* there for debugging purposes, and can be safely taken out at any 
* time.  It just holds the intial count for each of the symbols, since 
* the count member is continually being modified as the tree grows. 
*/ 
typedef struct tree_node { 
     unsigned int count; 
     unsigned int saved_count; 
     int child_0; 
     int child_1 
} NODE; 
 
/* 
* A Huffman tree is set up for decoding, not encoding.  When encoding, 
* I first walk through the tree and build up a table of codes for 
* each symbol.  The codes are stored in this CODE structure. 
/* 
 
typedef struct code { 



     unsigned int code; 
     int code_bits; 
} CODE; 
 
/* 
* The special EOS symbol is 256, the first available symbol after all 
* of the possible bytes.  When decoding, reading this symbol 
* indicates that all of the data has been read in. 
*/ 
#define END_OF_STREAM 256 
 
/* 
* Local function prototypes, defined with or without ANSI prototypes. 
*/ 
#ifdef  __STDC__ 
 
void count_bytes( FILE *input, unsigned long *long_counts ); 
void scale_counts( unsigned long *long_counts, NODE *nodes ); 
int build_tree( NODE *nodes ); 
void convert_tree_to_code( NODE *nodes, 
                           CODE *codes, 
                           unsigned int code_so_far, 
                           int bits, 
                           int node ); 
void output_counts( BIT_FILE *output, NODE *nodes ); 
void input_counts( BIT_FILE *input, NODE *nodes ); 
void print_model( NODE *nodes, CODE *codes ); 
void compress_data( FILE *input, BIT_FILE *output, CODE *codes ); 
void expand_data( BIT_FIle *input, FILE *output, NODE *nodes, 
                  int root_node ); 
void print_char( int c ); 
#else /* __STDC__ */ 
 
void count_bytes(); 
void scale_counts(); 
int build_tree(); 
void convert_tree_to_code(); 
void output_counts(); 
void input_counts(); 
void print_model(); 
void compress_data(); 
void expand_data(); 
void print_char(); 
 
#endif /* __STDC__ */ 
 
/* 
* These two strings are used by MAIN-C.C and MAIN-E.C to print 
* messages of importance to the use of the program. 
*/ 
char *CompressionName = "static order 0 model with Huffman coding"; 
char *Usage = 
"infile outfile [-d]\n\n\ Specifying -d will dump the modeling\ 
   data\n"; 
 
/* 
* CompressFile is the compression routine called by MAIN-C.C.  It 



* looks for a single additional argument to be passed to it from 
* the command line:  "-d".  If a "-d" is present, it means the 
* user wants to see the model data dumped out for debugging 
* purposes. 
* 
* This routine works in a fairly straightforward manner.  First, 
* it has to allocate storage for three different arrays of data. 
* Next, it counts all the bytes in the input file.  The counts 
* are all stored in long int, so the next step is to scale them down 
* to single byte counts in the NODE array.  After the counts are 
* scaled, the Huffman decoding tree is built on top of the NODE 
* array.  Another routine walks through the tree to build a table 
* of codes, one per symbol. Finally, when the codes are all ready, 
* compressing the file is a simple matter.  After the file is 
* compressed, the storage is freed up, and the routine returns. 
* 
*/ 
void CompressFile( input, output, argc, argv ) 
FILE *input; 
BIT_FILE *output; 
int argc; 
char *argv[]; 
{ 
 
     unsigned long *counts; 
     NODE *nodes; 
     CODE *codes; 
     int root_node; 
 
     counts = ( unsigned long *) 
                   calloc( 256, sizeof( unsigned long ) ); 
     if ( counts == NULL ) 
       fatal_error( "Error allocating counts array\n" ); 
     if ( ( nodes = (NODE *) 
                     calloc( 514, sizeof( NODE ) ) ) == NULL ) 
       fatal_error( "Error allocating nodes array\n" ); 
     if ( ( codes = (CODE *) 
                     calloc( 257, sizeof( CODE ) ) ) == NULL ) 
       fatal_error( "Error allocating codes array\n" ); 
     count_bytes( input, counts ); 
     scale_counts( counts, nodes ); 
     output_counts( output, nodes ); 
     root_node = build_tree( nodes ); 
     convert_tree_to_code( nodes, codes, 0, 0, root_node ); 
     if ( argc > 0 && strcmp( argv[ 0 ], "-d" ) == 0 ) 
       print_model( nodes, codes ); 
     compress_data( input, output, codes ); 
     free( (char *) counts ); 
     free( (char *) nodes ); 
     free( (char *) codes ); 
} 
 
/* 
* ExpandFile is the routine called by MAIN-E.C to expand a file that 
* has been compressed with order 0 Huffman coding.  This routine has 
* a simpler job than that of the Compression routine.  All it has to 
* do is read in the counts that have been stored in the compressed 



* file, then build the Huffman tree.  The data can then be expanded 
* by reading in a bit at a time from the compressed file.  Finally, 
* the node array is freed and the routine returns. 
* 
*/ 
void ExpandFile( input, output, argc, argv ) 
BIT_FILE *input; 
FILE *output; 
int argc; 
char *argv[]; 
{ 
 
     NODE *nodes; 
     int root_node; 
 
     if ( ( nodes = (NODE *) 
                    calloc( 514, sizeof( NODE ) ) ) == NULL ) 
       fatal_error( "Error allocating nodes array\n" ); 
     input_counts( input, nodes ); 
     root_node = build_tree( nodes ); 
     if ( argc > 0 && strcmp( argv[ 0 ], "-d" ) == 0 ) 
          print_model( nodes, 0 ); 
     expand_data( input, output, nodes, root_node ); 
     free( (char *) nodes ); 
} 
 
/* 
* In order for the compressor to build the same model, I have to 
* store the symbol counts in the compressed file so the expander can 
* read them in. In order to save space, I don't save all 256 symbols 
* unconditionally. The format used to store counts looks like this: 
* 
* start, stop, counts, start, stop, counts, ... 0 
* 
* This means that I store runs of counts, until all the non-zero 
* counts have been stored. At this time the list is terminated by 
* storing a start value of 0. Note that at least 1 run of counts has 
* to be stored, so even if the first start value is 0, I read it in. 
* It also means that even in an empty file that has no counts, I have 
* to pass at least one count, which will have a value of 0. 
* 
* In order to efficiently use this format, I have to identify runs of 
* non-zero counts. Because of the format used, I don't want to stop a 
* run because of just one or two zeros in the count stream. So I have 
* to sit in a loop looking for strings of three or more zero values 
* in a row. 
* 
* This is simple in concept, but it ends up being one of the most 
* complicated routines in the whole program. A routine that just 
* writes out 256 values without attempting to optimize would be much 
* simpler, but would hurt compression quite a bit on small files. 
* 
*/ 
void output_counts ( output, nodes ) 
BIT_FILE *output; 
NODE *nodes; 
{ 



     int first; 
     int last; 
     int next; 
     int i; 
     first = 0; 
     while ( first < 255 && nodes[ first ].count == 0 ) 
          first++; 
/* 
* Each time I hit the start of the loop,  I assume that first is the 
* start of a run of non-zero values.  The rest of the loop is 
* concerned with finding the value for last, which is the end of the 
* run, and the value of next, which is the start of the next run. 
* At the end of the loop, I assign next to first, so it starts in on 
* the next run. 
*/ 
     for ( ; first < 256 ; first = next) { 
          last = first + 1; 
          for ( ; ; ) { 
              for ( ; last < 256 ; last ++ ) 
                   if ( nodes[ last ].count == 0 ) 
                        break; 
 
              last--; 
              for ( next = last + 1; next < 256 ; next++ ) 
                   if ( nodes[ next ]. count ! = 0 ) 
                        break; 
              if ( next > 255 ) 
                   break; 
              if ( ( next - last ) > 3 ) 
                   break; 
              last = next; 
          }; 
/* 
* Here is where I output first, last, and all the counts in between. 
*/ 
             if ( putc( first, output->file ) != first) 
                  fatal_error( "Error writing byte counts\n" ); 
             if ( putc( last, output->file ) != last) 
                  fatal_error( "Error writing byte counts\n" ); 
             for ( i = first ; i <= last ; i++ ) { 
                 if ( putc( nodes[ i ]. count, output->file ) != 
                      (int) nodes[ i ]. count) 
                      fatal_error( "Error writing byte counts\n" ); 
             } 
       } 
       if ( putc( 0, output->file ) != 0 
              fatal_error( "Error writing byte counts\n" ); 
} 
/* 
* When expanding, I have to read in the same set of counts.  This is 
* quite a bit easier that the process of writing them out, since no 
* decision making needs to be done.  All I do is read in first, check 
* to see if I am all done, and if not, read in last and a string of 
* counts. 
*/ 
void input_counts( input, nodes) 
BIT_FILE *input; 



NODE *nodes; 
{ 
     int first; 
     int last; 
     int i; 
     int c; 
 
     for ( i = 0 ; i < 256 ; i++ ) 
         nodes[ i ]. count = 0; 
     if ( ( first = getc( input->file ) ) == EOF) 
          fatal_error( "Error reading byte counts\n" ); 
     if ( ( last = getc( input->file ) ) == EOF ) 
          fatal_error( "Error reading byte counts\n); 
     for ( ; ; ) { 
         for ( i = first ; i <= last ; i++ ) 
             if ( ( c = getc( input->file ) ) == EOF) 
                  fatal_error( "Error reading byte counts\n" ); 
             else 
                  nodes[ i ]. count = (unsigned int) c; 
         if ( ( first = getc( input->file ) ) == EOF ) 
              fatal_error( "Error reading byte counts\n" ); 
         if ( first == 0) 
              break; 
         if ( ( last = getc( input->file ) ) == EOF ) 
              fatal_error( "Error reading byte counts\n" ); 
     } 
     nodes[ END_OF_STREAM ].count = 1; 
} 
 
/* 
* This routine counts the frequency of occurence of every byte in 
* the input file.  It marks the place in the input stream where it 
* started, counts up all the bytes, then returns to the place where 
* it started.  In most C implementations, the length of a file 
* cannot exceed an unsigned long, so this routine should always 
* work. 
*/ 
#ifndef SEEK_SET 
#define SEEK_SET 0 
#endif 
 
void count_bytes( input, counts) 
FILE *input; 
unsigned long *counts; 
{ 
     long input_marker; 
     int c; 
 
     input_marker = ftell( input ); 
     while ( ( c = getc( input ) ) != EOF ) 
         counts[ c ]++; 
     fseek( input, input_marker, SEEK_SET ); 
} 
 
/* 
* In order to limit the size of my Huffman codes to 16 bits, I scale 
* my counts down so they fit in an unsigned char, and then store them 



* all as initial weights in my NODE array.  The only thing to be 
* careful of is to make sure that a node with a non-zero count doesn't 
* get scaled down to 0.  Nodes with values of 0 don't get codes. 
*/ 
void scale_counts( counts, nodes ) 
unsigned long *counts; 
NODE *nodes; 
{ 
     unsigned long max_count; 
     int i; 
 
     max_count = 0; 
     for ( i = 0 ; i < 256 ; i++ ) 
         if ( counts[ i ] > max_count ) 
              max_count = counts[ i ] ; 
     if ( max_count == 0 ) { 
          counts[ 0 ] = 1; 
          max_count = 1; 
     } 
     max_count = max_count / 255; 
     max_count = max_count + 1; 
     for ( i = 0 ; i < 256 ; i++ ) { 
          nodes[ i ].count = (unsigned int) 
                                 ( counts[ i ] / max_count ); 
          if ( nodes[ i ].count == 0 && counts[ i ] !=0 ); 
               nodes[ i ].count = 1; 
     } 
     nodes[ END_OF_STREAM ]. count = 1; 
} 
/* 
* Building the Huffman tree is fairly simple.  All of the active nodes 
* are scanned in order to locate the two nodes with the minimum 
* weights.  These two weights are added together and assigned to a new 
* node.  The new node makes the two minimum nodes into its 0 child 
* and 1 child.  The two minimum nodes are then marked as inactive. 
* This process repeats until there is only one node left, which is 
* the root node.  The tree is done, and the root node is passed back 
* to the calling routine. 
* 
* Node 513 is used here to arbitratily provide a node with a guaran 
* teed maximum value.  It starts off being min_1 and min_2.  After all 
* active nodes have been scanned, I can tell if there is only one 
* active node left by checking to see if min_1 is still 513. 
*/ 
int build_tree( nodes ) 
NODE *nodes; 
{ 
     int next_free; 
     int i; 
     int min_1; 
     int min_2; 
 
     nodes[ 513 ].count = Oxffff; 
     for ( next_free = END_OF_STREAM + 1 ; ; next_free++ ) { 
          min_1 = 513; 
          min_2 = 513; 
          for ( i = 0 ; i < next_free; i++ ) 



              if ( nodes[ i ].count != 0) { 
                  if ( nodes[ i ].count < nodes[ min_1 ].count ) { 
                   min_2 + min_1; 
                   min_1 = i; 
                  } else if ( nodes[ i ].count 
                              < nodes[ min_2 ].count) 
                    min_2 = i; 
              } 
          if ( min_2 == 513 ) 
               break; 
          nodes[ next_free ].count = nodes[ min_1 ].count 
                                      + nodes[ min_2 ].count; 
          nodes[ min_1 ].saved_count = nodes[ min_1 ].count; 
          nodes[ min_1 ].count = 0; 
          nodes[ min_2 ].saved_count = nodes[ min_2 ].count; 
          nodes[ min_2 ].count = 0; 
          nodes[ next_free ].child_0 = min_1; 
          nodes[ next_free ].child_1 = min_2; 
          } 
          next_free--; 
          nodes[ next_free ].saved_count = nodes[ next_free ].count; 
          return( next_free ); 
} 
/* 
* Since the Huffman tree is built as a decoding tree, there is 
* no simple way to get the encoding values for each symbol out of 
* it.  This routine recursively walks through the tree, adding the 
* child bits to each code until it gets to a leaf.  When it gets 
* to a leaf, it stores the code value in the CODE element, and 
* returns. 
*/ 
void convert_tree_to_code( nodes, codes, code_so_far, bits, node ) 
NODE *nodes; 
CODE *codes; 
unsigned int code_so_far; 
int bits; 
int node; 
{ 
     if ( node <= END_OF_STREAM ) { 
          codes[ node ].code = code_so_far; 
          codes[ node ].code_bits = bits; 
          return; 
 
     } 
     code_so_far <<= 1; 
     bits++; 
     convert_tree_to_code( nodes, codes, code_so_far, bits, 
                           nodes[ node ]. child_0 ); 
     convert_tree_to_code( nodes, codes, code_so_far | 1, 
                           bits, nodes[ node ].child_1 ); 
} 
/* 
* If the -d command line option is specified, this routine is called 
* to print out some of the model information after the tree is built. 
* Note that this is the only place that the saved_count NODE element 
* is used for anything at all, and  in this case it is just for 
* diagnostic information.  By the time I get here, and the tree has 



* been built, every active element will have 0 in its count. 
*/ 
void print_mode1( nodes, codes ) 
NODE *nodes; 
CODE *codes; 
{ 
     int i; 
 
     for ( i = 0 ; i < 513 ; i++ ) { 
       if ( nodes[ i ].saved_count != 0 ) { 
            printf( "node=" ); 
            print_char( i ); 
            printf( " count=%3d", nodes[ i ].saved_count ); 
            printf( " child_0=" ); 
            print_char( nodes[ i ]. child_0 ); 
            printf( " child_1=" ); 
            print_char( nodes[ i ].child_1 ); 
            if ( codes && i <= END_OF_STREAM ) { 
                printf( " Huffman code=" ); 
                FilePrintBinary( stdout, codes[ i ].code, 
                                 codes[ i ].code_bits ); 
            } 
            printf( "\n" ); 
       } 
     } 
} 
 
/* 
* The print_model routine uses this function to print out node num 
* bers.  The catch is if it is a printable character, it gets printed 
* out as a character.  This makes the debug output a little easier to 
* read. 
*/ 
void print_char( c ) 
int c; 
{ 
     if ( c >= 0x20 && c < 127 ) 
          printf( "`%c'", c ); 
     else 
          printf( "%3d", c ); 
} 
 
/* 
* Once the tree gets built, and the CODE table is built, compressing 
* the data is a breeze.  Each byte is read in, and its corresponding 
* Huffman code is sent out. 
*/ 
void compress_data( input, output, codes ) 
FILE *input; 
BIT_FILE *output; 
CODE *codes; 
{ 
     int c; 
 
     while ( ( c = getc( input ) ) != EOF ) 
          OutputBits( output, (unsigned long) codes[ c ].code, 
                      codes[ c ].code_bits ); 



     OutputBits( output, (unsigned long) codes[ END_OF_STREAM ].code, 
                          codes[ END_OF_STREAM ].code_bits ); 
} 
/* 
 
* Expanding compressed data is a little harder than the compression 
* phase.  As each new symbol is decoded, the tree is traversed, 
* starting at the root node, reading a bit in, and taking either the 
* child_0 or child_1 path.  Eventually, the tree winds down to a 
* leaf node, and the corresponding symbol is output.  If the symbol 
* is the END_OF_STREAM symbol, it doesn't get written out, and 
* instead the whole process terminates. 
*/ 
void expand_data( input, output, nodes, root_node ) 
BIT_FILE *input; 
FILE *output; 
NODE *nodes; 
int root_node; 
{ 
     int node; 
 
     for ( ; ; ) { 
         node = root_node; 
         do { 
              if ( InputBit( input ) ) 
                   node = nodes[ node ].child_1; 
              else 
                   node = nodes[ node ].child_0; 
         } while ( node . END_OF_STREAM ); 
         if ( node == END_OF_STREAM ) 
              break; 
         if ( ( putc( node, output ) ) != node ) 
              fatal_error( "Error trying to write byte to output" ); 
     } 
} 
/*****************************End of HUFF.C***************************/ 

Putting It All Together 

The actual commands to build the compression and expansion programs will differ 
depending on which compiler and operating system you are using. Assuming you name 
the compression program HUFF-C and the expansion program HUFF-E, here are the 
command lines to compile the programs with various compilers:  

     Microsoft C:  cl /W3 /Za /FeHUFF-C MAIN-C.C HUFF.C BITIO.C 
ERRHAND.C 
                   cl /W3 /Za /FeHUFF-E MAIN-E.C HUFF.C BITIO.C 
ERRHAND.C 
     Borland C++:  bcc -Ax -w -eHUFF-C MAIN-C.C HUFF.C BITIO.C 
ERRHAND.C 
                   bcc -Ax -w -eHUFF-E MAIN-E.C HUFF.C BITIO.C 
ERRHAND.C 
     UNIX pcc:  cc -ohuff-c main-c.c huff.c bitio.c errhand.c 
                cc -ohuff-e main-e.c huff.c bitio.c errhand.c 



Remember that ANSI-compatible C compilers must have their extensions turned off on 
the command line to enable the __STDC__ macro. The __STDC__macro is necessary to 
turn on the ANSI prototypes. If you don’t want to continually have to add this unfamiliar 
command-line switch when you compile, simply strip out the “#ifdef __STDC__” line 
and always pull in the ANSI C prototypes. The only reason for doing this is to have code 
that will compile cleanly on K&R compilers. If you aren’t using a K&R compiler, 
keeping in the K&R prototypes is of dubious value.  

The module ERRHAND.C needs the __UNIX__ definition in order to use old-style 
variable arguments. Fully compliant ANSI C compilers may not have to turn this option 
on. If you are going to only be using your source code on your UNIX system, it would 
probably be simpler to put a “#define__UNIX__” in your ERRHAND.C file. 

Performance 

Order 0 Huffman coding is not going to take any prizes for compression ratios. But it 
does fairly well in terms of program size, memory requirements, and processing speed. 
To see how HUFF.C does overall, see the scorecards in Appendix A.  

 
 
 
 
 
 
 
 
 
 
 

Chapter 4 
A Significant Improvement: Adaptive Huffman Coding  
In Chapter 3, we saw how Huffman coding could perform effective data compression by 
reducing the amount of redundancy in the coding of symbols. Huffman coding does not 
in itself tell how to reduce the information content of each symbol by developing an 
accurate model. But any model that can calculate the probability of a symbol with any 
accuracy should be able to use Huffman coding to compress data.  

The examples in Chapter 3 all used order 0 models, which are essentially context free. 
This means that the probability of a given character is calculated without taking into 
account the characters that preceded it in a message. The programs used in Chapter 3 just 
analyzed the entire input file and created a table of probabilities for each symbol. As long 



as these probabilities deviated from a purely uniform distribution, we were able to 
compress the data. 

A minor drawback to Huffman coding programs is the requirement that they transmit a 
copy of the probability table with the compressed data. The expansion program would 
have no way of correctly decoding the data without the probability table. The table 
requires at most the addition of an extra 250 or so bytes to the output table, and 
consequently it usually doesn’t make much difference in the compression ratio. Even 
small files won’t be greatly affected, since the probability table should also be small for 
these files. 

The problem with this “minor drawback” is that as we attempt to improve the 
compression ability of our program, the penalty becomes more and more significant. If 
we move from order-0 to order-1 modeling, for example, we now have to transmit 257 
probability tables instead of just one. So by using a technique that enables us to predict 
characters more accurately, we incur a penalty in terms of added overhead. Unless the 
files we are going to compress are very large, this added penalty will frequently wipe out 
any improvements made by increasing the order. 

Adaptive Coding 

This seems to lead to an impasse. To compress better, we need to accumulate more 
statistics. When we get more statistics, we achieve better compression but we wipe out 
any gains by having to send more modeling data.  

Fortunately, there is a way out of this dilemma. Adaptive coding lets us use higher-order 
modeling without paying any penalty for added statistics. It does this by adjusting the 
Huffman tree on the fly, based on data previously seen and having no knowledge about 
future statistics. 

Adaptive coding is not something that can just be used with Huffman coding. In principle, 
almost any form of coding can be converted to use an adaptive method. The high-level C 
program required to do adaptive compression is shown below. 

initialize_model(); 
do { 
     c = getc( input ); 
     encode( c, output ); 
     update_model( c ); 
} while ( c !=  EOF ); 

The decompressor works in a nearly identical fashion, as shown here:  

initialize_model(); 
while ( ( c = decode( input ) ) ! = EOF ) { 
    putc( c, output ); 
    update_model( c ); 
} 



Adaptive coding works since two of the routines used in these two algorithms are 
identical: initialize_model() and update_model(). If these routines differed even slightly 
between the compression and decompression programs, the whole system would fall 
apart.  

This sort of coding is fairly simple. The compressor and decompressor start off with 
identical models to encode and decode. So when the compressor puts out its very first 
encoded symbol, the decompressor will be able to interpret it. 

After the compressor emits the first symbol, it proceeds to the update_model() function. 
This is where the adaptive nature of the program begins. The update model takes into 
account the character that has just been seen and updates the frequency and encoding data 
used to encode that character. In a Huffman tree, it means incrementing the count for the 
particular symbol, then updating the Huffman coding tree. 

Updating the Huffman Tree 

The algorithm for constructing a Huffman coding tree is fairly simple, but it is not 
something we would want to do after every character is encoded. It would be relatively 
simple to implement adaptive Huffman coding with the following update function:  

update_model( int c ) 
{ 
    counts[ c ]++; 
    construct_tree( counts ); 
} 

Unfortunately, what we would end up with would probably be the world’s slowest data-
compression program. Building the tree takes too much work to reasonably expect to do 
it after every character.  

Fortunately, there is a way to take an existing Huffman coding tree and modify it to 
account for a new character. All it takes is a slightly different approach to building the 
tree in the first place. This approach introduces a concept known as the sibling property. 
A Huffman tree is simply a binary tree that has a weight assigned to every node, whether 
an internal node or a leaf node. Each node (except for the root) has a sibling, the other 
node that shares the same parent. The tree exhibits the sibling property if the nodes can 
be listed in order of increasing weight and if every node appears adjacent to its sibling in 
the list. 

A binary tree is a Huffman tree if and only if it obeys the sibling property. Figure 4.1 
shows a Huffman tree that illustrates how this works. In this tree, the nodes have been 
assigned numbers, with the numbers assigned from left to right starting at the lowest row 
of nodes and working up. This tree was created using a conventional Huffman algorithm 
given the weights A=1, B=2, C=2, D=2, and E=10. 



 
Figure 4.1  A Huffman tree. 

In Figure 4.1, the A, B, C, and D nodes at the bottom of the tree are numbered in 
increasing order starting at 1. Nodes 5 and 6 are the first two internal nodes, with weights 
of 3 and 4. The node numbers work their way up to node 9, the root. This arrangement 
shows that this tree obeys the sibling property. The nodes have been numbered in order of 
increasing weight, and each node is adjacent to its sibling in the list.  

The sibling property is important in adaptive Huffman coding since it helps show what 
we need to do to a Huffman tree when it is time to update the counts. Maintaining the 
sibling property during the update assures that we have a Huffman tree before and after 
the counts are adjusted. 

Updating the tree consists of two basic types of operations. The first, incrementing the 
count, is easy to follow conceptually. To increment the count for symbol ‘c,’ start at the 
leaf node for the symbol and increment the count for the leaf node. Then move up to the 
parent node. Since the weight of the parent node is the sum of the weight of its children, 
incrementing its weight by one will adjust it to its correct value. This process continues 
all the way up the tree till we reach the root node.  

Figure 4.2 shows how the increment operation affects the tree. Starting at the leaf, the 
increment works its way up the tree till it reaches the parent node. Implementing this 
portion of the code is relatively simple. Be sure that each node has a parent pointer and 
that an index points to the leaf node for each symbol. This can be done using 
conventional data structures at a low cost. The average number of increment operations 
required will correspond to the average number of bits needed to encode a symbol. 



 
Figure 4.2  The increment process. 

The second operation required in the update procedure arises when the node increment 
causes a violation of the sibling property. This occurs when the node being incremented 
has the same weight as the next highest node in the list. If the increment were to proceed 
as normal, we would no longer have a Huffman tree.  

When we have an increment that violates the sibling property, we need to move the 
affected node to a higher point in the list. This means that the node is detached from its 
present position in the tree and swapped with a node farther up the list. 

Figure 4.3 shows the same Huffman tree from Figure 4.2 after the A node has been 
incremented again, then switched with the D node. How was the D node selected as the 
one to be switched? To minimize the amount of work during the shuffle, we want to swap 
just two nodes. If the newly incremented node has a weight of W + 1, the next higher 
node will have a weight of W. There may be more nodes after the next higher one that 
have a value of W as well. The swap procedure moves up the node list till it finds the last 
node with a weight of W. That node is swapped with the node with weight W + 1. The 
new node list will then have a string of 1 or more weight W nodes, followed by the newly 
incremented node with weight W + 1. 



 
Figure 4.3  After a node switch (only the A node has been incremented). 

In Figure 4.3, the A node was incremented from a weight of 2 to 3. Since the next node in 
the list, the B node, had a weight of 2, the tree no longer obeyed the sibling property. This 
meant it was time to swap. We worked our way up the list of nodes till we found the last 
node with a weight of 2, the D node. The A and D nodes were then swapped, yielding a 
correctly ordered tree.  

After the swap is completed, the update can continue. The next node to be incremented 
will be the new parent of the incremented node. In Figure 4.3, this would be internal node 
#6. As each node is incremented, a check is performed for correct ordering. A swap is 
performed if necessary. 

What Swapping Does 

The swap shown in Figure 4.3 doesn’t have a noticeable effect on the coding of the 
symbols. The A and D nodes were swapped, but the length of their codes did not change. 
They were both three bits long before the swap and three bits long after.  

Figure 4.4 shows what happens to the three after the A symbol has been incremented two 
more times. After the second increment, the A node has increased enough to swap 
positions with an internal node on a higher level of the tree. This reshapes the tree, 
impacting the length of the codes. When A had a count of two like three other symbols, it 
was encoded using three bits. Now, when its count has increased to five, it is encoded 
using only 2 bits. Symbols C is still encoded using 3 bits, but B and D have slipped down 
to 4 bits. 

 

 



 

 
Figure 4.4  After another node switch. 

The Algorithm 

In summary, the algorithm for incrementing the count of a node goes something like 
what’s shown below:  

for ( ; ; ) { 
     increment nodes[ node ].count; 
     if ( node == ROOT ) 
         break; 
     if ( nodes[ node ].count > nodes[ node + 1 ].count ) 
         swap_nodes(); 
     node = nodes[ node ].parent; 
} 

The swap_nodes() routine has to move up through the list of nodes until it finds the right 
node to swap with. It then performs the swap. This routine looks something like that 
shown below:  

swap_node = node + 1; 
while ( nodes[ swap_node + 1 ].count < nodes[ node ].count ) 
     swap_node++; 
temp = nodes[ swap_node ].parent; 



nodes[ swap_node ].parent = nodes[ node ].parent; 
nodes[ node ].parent = temp; 

An Enhancement 

One way to make coding more efficient is to make sure your coder doesn’t waste coding 
space for symbols not used in the message. With the standard Huffman coding in the 
previous chapter, this was easy. Since we made a pass over the data to collect statistics 
before building the tree, we knew in advance which symbols weren’t used. So when we 
built the Huffman tree we didn’t have to include symbols with a count of 0.  

With an adaptive process, we don’t know in advance which symbols will show up in the 
message. The simplest way to handle this problem is to initialize the Huffman tree to 
have all 256 possible bytes (for conventional 8-bit data messages) predefined with a 
count of 1. When the encoding first starts, each message will have a length of eight bits. 
As statistics accumulate, frequently seen characters will start to use fewer and fewer bits. 

This method of encoding works, but in many cases it wastes coding capacity. Particularly 
in shorter messages, the extra unused codes tend to blunt the effect of compression by 
skewing the statistics of the message. 

A better way to handle this aspect of coding is to start the encoding process with an 
empty table and add symbols only as they are seen in the incoming message. But this 
presents us with a seeming contradiction. The first time a symbol appears, it can’t be 
encoded since it doesn’t appear in the table. So how do we get around this problem? 

The Escape Code 

The answer to this puzzle is the escape code. The escape code is a special symbol sent out 
of the encoder to signify that we are going to `escape’ from the current context. The 
decoder know that the next symbol will be encoded in a different context. We can use 
this mechanism to encode symbols that don’t appear in the currently defined Huffman 
tree.  

In the example program in this chapter, the escape code signifies that the next symbol to 
be encoded will be sent as a plain 8-bit character. The symbol is added to the table, and 
regular encoding resumes. The C code to implement the encoder for this algorithm looks 
something like this: 

encode( char c ) 
{ 
     if ( in_tree( c ) ) 
          transmit_huffman_code( c, out_file ); 
     else { 
          transmit_huffman_code( ESCAPE, out_file ); 
          putc( c, out_file ); 
          add_code_to_tree( c ); 
     } 



     update_tree( c ); 
} 

This example shows that the escape code is transmitted like any other symbol from the 
Huffman tree, so it has to appear in the Huffman tree to be properly transmitted. When 
the encoder first starts up, it needs to be initialized with the escape code already present.  

In the implementation used in the example code for this chapter, the Huffman tree is 
actually initialized with two values: the escape code and the end of file code. Since both 
will appear in the file, we start off with them in a very small Huffman tree: 

 
Figure 4.5  A Huffman tree initialized with two values. 

As the encoding process goes on, the table fills up and the tree fleshes out. The end of file 
code will always have a weight of one, and in this implementation, so will the escape 
code. As the tree grows, these two codes will always be stuck down at the remotest 
branches of the tree and have the longest codes.  

The Overflow Problem 

As the compression program progresses, the counts in the table increase. At some point, 
the counts become large enough to cause trouble for the program. There are two possible 
areas of concern. The first occurs when the weight of the root exceeds the capacity of the 
counters in the tree. For most of the programs used here, that will be 16 bits.  

Another possible problem can occur even sooner. It happens when the length of the 
longest possible Huffman code exceeds the range of the integer used to transmit it. The 
decoding process doesn’t care how long a code is, since it works its way down through 
the tree a bit at a time. The transmitter has a different problem though. It has to start at 
the leaf node of the tree and work up towards the root. It accumulates bits to be 
transmitted in reverse order, so it has to stack them up. This is conventionally done in an 
integer variable, so this means that when a Huffman code exceeds the size of that integer, 
there is a problem. 

The maximum length of a Huffman code is related to the maximum count via a Fibonacci 
sequence. A Fibonacci function is defined as follows: 

int fib( int n ) 
{ 
  if ( n <= 1 ) 



      return( 1 ); 
  else 
    return( fib( n - 1 ) + fib( n -2 ) ); 
} 

The sequence of Fibonacci numbers looks something like this: 1, 1, 2, 3, 5, 8, 13, 21, 34, 
etc. These numbers show up in the worst-case, most lopsided Huffman tree:  

 
Figure 4.6  A lopsided Huffman tree produced through a sequence of Fibonacci numbers. 

From this we can deduce that if the weight at the root node of a Huffman tree equals 
fib(i), then the longest code for that tree is i - 1. This means that if the integers used with 
our Huffman codes are only 16 bits long, a root value of 4181 could potentially introduce 
an overflow. (This low value is frequently overlooked in simple Huffman 
implementations. Setting up a file with Fibonacci counts up to fib[18] is a good way to 
test a Huffman program). When we update the tree, we ought to check for a maximum 
value. Once we reach that value, we need to rescale all the counts, typically dividing 
them by a fixed factor, often two.  

One problem with dividing all the counts by two is that it can possibly reshape the tree. 
Since we are dealing with integers, dividing by two truncates the fractional part of the 
result, which can lead to imbalances. Consider the Huffman tree shown in Figure 4.7. 

 

 

 

 

 



 

 
Figure 4.7  A Huffman tree created for four symbols. 

This is a tree created for four symbols: A, B, C, and D, with weights of 3, 3, 6, and 6. The 
nodes of the tree are numbered in this diagram, and the diagram clearly shows that the 
tree is a Huffman tree, since it obeys the sibling property. The problem with this tree 
occurs if we try a rescaling operation. The simple version of the rescaling algorithm 
would go through the tree, dividing every leaf node weight by two, then rebuilding 
upwards from the leaf nodes. The resulting tree would look like what follows.  

 
Figure 4.8  The rescaling problem after the nodes are divided by two. 

The problem with the resulting tree is that it is no longer a Huffman tree. Because of the 
vagaries of truncation that follow integer division, we need to end up with a tree that has 
a slightly different shape:  

 

 

 

 



 

 
Figure 4.9  What the tree should look like after integer division. 

The properly organized Huffman tree has a drastically different shape from what it had 
before being rescaled. This happens because rescaling loses some of the precision in our 
statistical base, introducing errors sometimes reflected in the rescaled tree. As time goes 
on, we accumulate more statistics, and the effect of the errors gradually fades away.  

Unfortunately, there is no simple way to compensate for the necessary reshaping the tree 
after rescaling. The sample code in this chapter merely does a brute-force rebuilding after 
rescaling. Rebuilding the entire tree is a relatively expensive operation, but since the 
rescaling operation is rare, we can live with the cost. 

A Rescaling Bonus 

An interesting side effect comes out of rescaling our tree at periodic intervals. Though we 
lose accuracy by scaling our counts, testing reveals that rescaling generally results in 
better compression ratios than if rescaling is postponed. This occurs because data streams 
frequently have a “decaying recency” effect, or the statistics for recently seen symbols 
are generally more valid than those accumulated farther back in the data stream. To put it 
simply, current symbols are more like recent symbols than older symbols.  

The rescaling operation tends to discount the effect of older symbols, while increasing the 
importance of recent symbols. Though difficult to quantify, this seems to have a good 
effect on compression. Experimenting with various rescaling points will yield different 
results at differing values, but it doesn’t seem possible to pin down an optimal strategy. 
There may be an optimal value for rescaling, but it moves around with different types of 
data streams. 



The Code 

The sample code for this chapter is a simple order-0 adaptive Huffman compression 
routine. It is linked with the standard I/O and user interface routines from the previous 
chapter to create a standalone compression program and a decompression program.  

The key to understanding how this sample code operates lies in understanding the data 
structures in the program. The data structure that describes the tree is shown next. 

struct tree { 
     int leaf[ SYMBOL_COUNT ]; 
     int next_free_node; 
     struct node { 
          unsigned int weight; 
          int parent; 
          int child_is_leaf; 
          int child; 
      } nodes[ NODE_TABLE_COUNT ]; 
} Tree; 

Two arrays describe the tree. The tree itself is entirely represented by the nodes[] array. 
This array is a set of structures with the following elements:  

unsigned int weight:  This weight element is the weight of individual node, just as it 
has been described previously in this chapter.  

int parent:  This int is the index of the parent node. The parent node 
information is necessary both when encoding a symbol, and 
when updating the model.  

int child_is_leaf:  The child of a given node can either be a leaf or a pair of 
nodes. This flag is used to indicate which it is.  

int child:  If the child is a leaf, this int holds the value of the symbol 
encoded at the leaf. If the child is a pair of nodes, this value is 
the index to the first node. Because of the sibling property, the 
two nodes will always be adjacent to one another, so we know 
the first node will be child, and the second node will be 
child+1.  

As described earlier in the chapter, every node in the tree is kept in a number list. When 
discussing the list before, we had the nodes with the lowest weight starting at 1 and 
working up to higher numbers until reaching the root. The implementation in this 
program is backwards from that, though the same principles apply. The list of nodes is 
the nodes[] array, with the highest number on the list appearing at nodes[0]. As we work 
our way down through the lower weights, we go to higher indices in the nodes list.  

When the tree is first initialized, nodes[0] is the root node, nodes [1] is set to the end-of-
stream symbol, and nodes[2] is set to the escape symbol. The next_free_node element in 



the tree is then set to 3, and the next time a character is added to the tree, it will be placed 
in nodes[3]. 

The leaf[] array in the tree data structure is used to find the leaf node for a particular 
symbol. To encode a symbol, start at the leaf node and work up to the root node of the 
tree, accumulating bits on the way (in reverse order). Without a leaf[] array to keep track 
of the leaf nodes, we would have to do a search through the entire tree every time we 
wanted to encode a character. 

Initialization of the Array 

Regardless of whether we perform compression or expansion, we initialize the Huffman 
tree using the same routine. When performing adaptive compression, it is extremely 
important to use an identical algorithm for both initialization and updating of the 
compression model. In this case, we use the same code to ensure that it happens.  

The initialization routine, InitializeTree(tree), is the first thing called by both the 
compression and expansion code. It uses the following code to initialize nodes 0, 1, and 2: 

tree->nodes[ ROOT_NODE].child                = ROOT_NODE + 1; 
tree->nodes[ ROOT_NODE].child_is_leaf        = FALSE; 
tree->nodes[ ROOT_NODE].weight               = 2; 
tree->nodes[ ROOT_NODE].parent               = -1; 
 
tree->nodes[ ROOT_NODE + 1 ].child           = END_OF_STREAM; 
tree->nodes[ ROOT_NODE + 1 ].child_is_leaf   = TRUE; 
tree->nodes[ ROOT_NODE + 1 ].weight          = 1; 
tree->nodes[ ROOT_NODE + 1 ].parent          = ROOT_NODE; 
tree->leaf[ END_OF_STREAM ]                  = ROOT_NODE + 1; 
 
tree->nodes[ ROOT_NODE + 2 ].child           = ESCAPE; 
tree->nodes[ ROOT_NODE + 2 ].child_is_leaf   = TRUE; 
tree->nodes[ ROOT_NODE + 2 ].weight          = 1; 
tree->nodes[ ROOT_NODE + 2 ].parent          = ROOT_NODE; 
tree->leaf[ ESCAPE ]                         = ROOT_NODE + 2; 
 
tree->next_free_node                         = ROOT_NODE + 3; 
 
for ( i = 0 ; i < END_OF_STREAM ; i++ ) 
    tree->leaf[ i ] = -1; 

The initialization of the tree->nodes[] elements is fairly direct. We assign the escape and 
end-of-stream nodes a weight of 1, which gives the root a weight of 2. The escape and 
end-of stream elements in the tree->leaf[] array are initialized to point to the appropriate 
nodes, and the parent and child pointers for each of the three nodes are initialized.  

The final details required during initialization are to set up the tree->next_free_node 
index and to initialize the remaining elements of the tree->leaf[] array. Since none of the 
leaf[] elements for our conventional symbols have been initialized, they are all set to 



values of -1. During the encoding process, we will compare the tree->leaf[] value for a 
given symbol to -1 to see if it has already been defined. 

The Compress Main Program 

The code for the compression program is short:  

InitializeTree( &Tree ); 
while ( ( c = getc( input ) ) != EOF ) { 
  EncodeSymbol( &Tree, c, output ); 
  UpdateModel( &Tree, c ); 
} 
EncodeSymbol(  &Tree, END_OF_STREAM, output ); 

Once the tree has been initialized, the program sits in a loop encoding characters and 
updating the model. When there are no more characters left to encode, it encodes the end-
of-stream symbol, and it is done.  

Complexities are hidden in these functions. The EncodeSymbol function needs to see if 
the symbol is already defined. If it isn’t, EncodeSymbol needs to output the escape code 
and the unencoded symbol. EncodeSymbol then needs to add the symbol to the tree, with 
a count of 0. 

The UpdateModel function also hides some complexity. It performs the update discussed 
previously in the chapter, which is fairly complex. Before doing the update, it checks to 
see if the root node has reached the maximum allowable weight. If it has, the tree is 
scaled by a factor of two and rebuilt. 

The Expand Main Program 

Like the compress main program, the expand program is short and to the point. After 
initializing the tree, it reads in symbols via the DecodeSymbol routine, then writes them 
to the output file. After each symbol is decoded, it is written to the output file, and the 
model is updated.  

As in the compress program, a certain amount of complexity is concealed in the higher-
level functions. The DecodeSymbol routine has to see if the symbol it decodes is an 
escape code. If it is, DecodeSymbol throws away the escape code and reads in an 
“unencoded” 8-bit symbol. The symbol is then added to the Huffman tree, with an initial 
count of 0. 

As previously seen, the UpdateModel() routine has to see if the root node has reached the 
maximum allowable count. If it has, the Huffman tree is rebuilt. After that, the normal 
increment/test/swap routine ensues. 

InitializeTree( &Tree ); 
while ( ( c = DecodeSymbol( &Tree, input ) ) !=END_OF_STREAM ) { 
  if ( putc( c, output ) == EOF ) 



    fatal_error( "Error writing character" ); 
  UpdateModel( &Tree, c ); 
} 

Encoding the Symbol 

After initializing the tree, the compress routine repeatedly calls the EncodeSymbol 
routine. The EncodeSymbol routine (shown below) first identifies the leaf node for the 
symbol to be encoded. If the leaf table returns a-1, it means that this symbol is not 
presently found in the Huffman tree. In that case, the symbol to be encoded is switched to 
the escape code, and its root node is located.  

The encoding process for a Huffman tree works by starting at the leaf node and moving 
up through the parent nodes one at a time, until the root is reached. In a conventional 
Huffman tree, there will usually be two child nodes for each parent, one that encodes a 0 
bit and another that encodes a 1 bit. The data structures used in this program take 
advantage of the sibling property by always grouping the two children of a parent node 
next to one another in the node list. 

Grouping children together saves space by requiring only a single child pointer instead of 
two. It also means that a child automatically knows whether it is the child that encodes a 
1 or 0 by whether it is odd or even. In this program, the odd child is arbitrarily designated 
the 1, and the even is always the 0. 

Given this information, the encoding process is accomplished without too many lines of 
C code. Starting at the leaf node, each bit is added to the cumulative Huffman code. 
Whether the bit is a 1 or a 0 determines whether the bit is odd or even. As each bit is 
encoded, the current_bit mask is shifted by one so the next bit encoded will appear in the 
next most significant position. A counter is also incremented that keeps track of how 
many bits have been accumulated in the output word so far. 

code = 0; 
current_bit = 1; 
code_size = 0; 
current_node = tree->leaf[ c ]; 
if ( current_node == -1 ) 
    current_node = tree->leaf[ ESCAPE ]; 
while ( current_node != ROOT_NODE  ) { 
    if ( ( current_node & 1 ) == 0 ) 
       code | = current_bit; 
    current_bit <<= 1; 
    code_size++; 
    current_node = tree->nodes[ current_node ].parent; 
}; 
OutputBits( output, code, code_size ); 
if ( tree->leaf[ c ] == -1 ) { 
    OutputBits( output, c, 8 ); 
    add_new_node( tree, c ); 
} 



After the bits of the Huffman code have been accumulated in the code word, the utility 
routine OutputBits (found in BITIO.C) is called to send out the code. There is still one 
piece of work left to do, however, before returning. If the code that was just output was 
the escape code, we have to handle the special condition created when a previously 
unreferenced symbol is encountered.  

The first step taken after the escape code is sent is simple. The new symbol is output in 
an unencoded fashion, just as it was read in from the file. This lets the decoder know 
what symbol to add to the table. The second step is to add the new node to the Huffman 
tree. When the new node is added to the tree, it is inserted with a weight of 0. The 0-
weight node will be incremented later when the model is updated, so it will not be 0 for 
long. The advantage to adding a node with a weight of zero is that it can be done without 
having to worry about updating any other nodes or, worse, changing the shape of the tree. 

Using the sibling property definitions, we know that if the new node has a weight of 0, it 
will be the very first node in the list, since nodes are ranked in order of weight. We add 
the node to the table by finding the presently lowest-weight node and break it out into 
two new nodes. The old lowest-weight node will be one of the two new nodes, and the 
new 0-weight node will be the other one. 

Figure 4.10 illustrates how this process modifies a working tree. The Huffman tree has 
already had the A, B, C, and D nodes defined with nonzero weights. The A node has the 
lowest count and consequently is at the start of the list (remember that the list in this 
program has the highest weights at 0). When symbol E is going to be added to the tree, 
we first identify A as the node at the end of the list. The position A used to occupy is 
converted to an internal node, and two new nodes are created. Since E is guaranteed to 
have the lowest weight in the tree, it is set to be the first node in the list, and A is set to be 
the second node. 

 
Figure 4.10  The Huffman tree before and after addition of a zero weight node. 



The code needed to add the node is listed below. The first step is to find the lowest-
weight node, which in the example was A. The new_node variable is the node which A 
will occupy, and the 0_weight_node is where E will go. Since these are two new nodes, 
they are set to be the next_free_node and next_free_node+1. After this is done, 
next_free_node is incremented by two so it will be ready for the next operation.  

lightest_node = tree->next_free_node - 1; 
new_node = tree->next_free_node; 
zero_weight_node = tree->next_free_node + 1; 
tree->next_free_node += 2; 
 
tree->nodes[ new_node ] = tree->nodes[ lightest_node ]; 
tree->nodes[ new_node ].parent = lightest_node; 
tree->leaf[ tree->nodes[ new_node ].child] = new_node; 
tree->nodes[ lightest_node ].child = new_node; 
tree->nodes[ lightest_node ].child_is_leaf = FALSE; 
 
tree->nodes[ zero_weight_node ].child          = c; 
tree->nodes[ zero_weight_node ].child_is_leaf  = TRUE; 
tree->nodes[ zero_weight_node ].weight         = 0; 
tree->nodes[ zero_weight_node ].parent         = lightest_node; 
tree->leaf[ c ] = zero_weight_node; 

After the two new nodes are created, a few more bookkeeping details are needed to link 
the two new children to their parent, to make sure their weights are correct, and to make 
sure the leaf array points to the correct nodes. After that, the routine is done, and the tree 
is ready to be updated.  

Updating the Tree 

The most complicated part of the Adaptive Huffman program is in the routines called to 
update the tree. Updating the model is simply a matter of incrementing a symbol weight 
by one and taking care of all the side effects of that action. Taking care of the side effects, 
however, involves some strenuous effort.  

if ( tree->nodes[ ROOT_NODE].weight == MAX_WEIGHT ) 
   RebuildTree( tree ); 
current_node = tree->leaf[ c ]; 
while ( current_node != -1 ) { 
   tree->nodes[ current_node ].weight++; 
   for ( new_node = current_node ; new_node > ROOT_NODE ; 
          new_node—– ) 
       if ( tree->nodes[ new_node - 1 ].weight >= 
             tree->nodes[ current_node ].weight ) 
            break; 
   if ( current_node != new_node ) { 
      swap_nodes( tree, current_node, new_node ); 
      current_node = new_node; 
   } 
   current_node = tree->nodes[ current_node ].parent; 
} 



This code performs all the work needed to update the tree. The first thing it checks for is 
to see if the tree has reached its maximum weight. If it has, the routine invokes the 
RebuildTree routine to scale down all the counts.  

After getting past the tree-rebuilding step, the loop that increments the node weights is 
entered. The first node to be incremented is the leaf node associated with the symbol. The 
loop increments the weight of that symbol, then moves up to the parent to increment that 
node. This process continues till the root is reached, at which point the update is done. 
The single symbol added to statistical base forming the tree has been accounted for. 

There is one additional step inside the loop, however, that takes place after every node 
has its weight incremented. The loop immediately following the increment operation 
works its way back through the list of nodes to see if the increased weight of the current 
node means it has to move up in the list. After the loop exits, new_node has the proper 
new location for the current node in the node list. If new_node is the same as 
current_node, the incremented node is fine where it is, and we can move on to the parent 
node. But if new_node and current_node aren’t the same, they have to be swapped. 

The process of swapping nodes involves lifting two entire subtrees out of their present 
positions in the list and exchanging them. The use of a tree data structure makes this 
easier than it may first appear. The swapping process is straightforward, complicated only 
by the fact that each node being swapped has links to both its parent and child, and the 
parent and child each have links to the node. This takes no great conceptual leaps. The 
swapping code is illustrated: 

struct node temp; 
 
     if ( tree->nodes[ i ].child_is_leaf ) 
        tree->leaf[ tree->nodes [ i ].child ] = j; 
     else { 
        tree->nodes[ tree->nodes [ i ].child ].parent = j; 
        tree->nodes[ tree->nodes [ i ].child + 1 ].parent = j; 
     } 
     if ( tree->nodes[ j ].child_is_leaf ) 
        tree->leaf[ tree->nodes [ j ].child ] = i; 
     else { 
        tree->nodes[ tree->nodes[ j ].child ].parent = i; 
        tree->nodes[ tree->nodes[ j ].child + 1 ].parent = i; 
     } 
     temp = tree->nodes[ i ]; 
     tree->nodes[ i ] = tree->nodes[ j ]; 
     tree->nodes[ i ].parent = temp.parent; 
     temp.parent = tree->nodes[ j ].parent; 
     tree->nodes[ j ] = temp; 

An update can also force the rebuilding of the tree. Rebuilding takes a fair amount of 
work, unfortunately, since it amounts to building a new Huffman tree.  



The rebuilding process proceeds in three discrete steps. The first step is to collect all the 
leaf nodes, throw away all the internal nodes, and divide the leaf-node weights by 2. The 
node list is compacted so that the new leaf nodes are all at the start of the list. 

j = tree->next_free_node - 1; 
for ( i = j ; i >= ROOT_NODE ; i–– ) { 
    if ( tree->nodes[ i ].child_is_leaf ) { 
      tree->nodes[ j ] = tree->nodes[ i ]; 
      tree->nodes[ j ].weight = (tree->nodes[ j ].weight + 1 ) / 2; 
      j––; 
    } 
} 

The code to do this is shown above. Note that in this implementation, none of the nodes 
scale down to zero. This is accomplished by adding 1 to the node before dividing it by 
two. It may be desirable to throw away infrequently seen symbols by reducing their 
counts to zero and deleting them from the list, but we don’t do that here.  

What we end up with in the above code is a list of leaf nodes that are at the start of the list, 
terminating at the next_free_node index. The internal nodes which start at 0 and end at 
the current value of j, will now be rebuilt in the next step. 

In Chapter 3, we built a Huffman tree by repeatedly scanning the node list and finding the 
two nodes with the lowest weight. Those two nodes would be combined to form a new 
internal node. The tree-rebuilding phase here takes a different approach based on the 
sibling property. 

The loop that creates internal nodes starts with j pointing to the next node that needs to be 
defined; i is an index that points to the next pair of nodes to be combined into an internal 
node. The loop progressively steps through the nodes, combining and adding new internal 
nodes until reaching the root node at location 0.  

The process of creating the new internal node is simple. The new node, located at index j, 
is assigned a weight. The weight is simply the sum of the two nodes at location i, as 
would be expected. The hard work comes next. After node j is created, we have to decide 
where it belongs in the node list. The decision on where the new node belongs is made 
based on the weights of the nodes in the list. Recall that the sibling property says that the 
nodes have to be listed based on increasing weight. We have to step through the list till 
we find the first node that is less that the new node j, then place the new node 
immediately adjacent to that node in the list. Here is the procedure for the correct location 
for j: 

for ( i = tree->next_free_node - 2 ; j >= ROOT_NODE ; 
     i -= 2, j–– ) { 
   k = i + 1; 
   tree->nodes[ j ].weight = tree->nodes[ i ].weight + 
                              tree->nodes[ k ].weight; 
   weight = tree->nodes[ j ].weight; 
   tree->nodes[ j ].child_is_leaf = FALSE; 



       for ( k = j + 1 ; weight < tree->nodes[ k ].weight ; k++) 
          ; 
   k––; 
  memmove( &tree->nodes[ j ]. &tree->nodes[ j + 1 ], 
             ( k - j ) * sizeof( struct node ) ); 
   tree->nodes[ k ].weight = weight; 
   tree->nodes[ k ].child = i; 
   tree->nodes[ k ].child_is_leaf = FALSE; 
} 

The variable ‘weight’ is assigned the weight of the new internal node. The routine then 
loops back through the list until it finds the first node with a weight less than or equal to 
the weight of j. Node j will be placed immediately after that node in the list. Before that 
node can be positioned, we need to make room in the list by moving all the nodes that 
have higher weights up by one position. This is done with the memmove() function. After 
that, the new node has its child and weight assigned, and the loop continues.  

This process can be seen in the short list of nodes about to be rebuilt in Figure 4.11. After 
having been rescaled, symbols A, B, C, and D have weights of 1, 3, 5, and 7 respectively. 
After the internal nodes have been stripped out, the list of nodes looks like Figure 4.11. 

 
Figure 4.11  The list of nodes after the internal nodes have been stripped. 

The first two nodes to be combined will be B and A, creating a new node, j, at location 2 
in the table. By stepping back through the list from location 2, we see that the resulting 
internal node belongs between locations 4 and 5, right before B. After the memory move 
function is executed and the node is connected, the partial Huffman tree looks like this:  

 
Figure 4.12  A partial Huffman tree after the memory move function is executed. 

Because we are moving nodes around so freely, we do not assign parent pointers during 
this process. Once a node has been assigned as a child to another node, it is not going to 
change position in the list. But parent nodes that have yet to be combined together as 
children of another internal node may be moved farther up in the list as other nodes are 
combined. If we assigned parent nodes earlier in the process, every time we moved a 



node we would have to go through a backtracking procedure to locate its children and 
update their parent indices. We bypass this costly procedure by deferring parent node 
building to the third and final step in the Rebuild procedure. Assigning parent nodes is 
fairly simple. We start at the root node, and locate the children of each node in the tree. 
The children then have their parent node index set. If the child is a leaf instead of another 
node, the leaf[] array node index is set.  

for ( i = tree->next_free_node - 1 ; i >= ROOT_NODE ; i-- ) { 
  if ( tree->nodes[ i ].child_is_leaf ) { 
    k = tree->nodes[ i ].child; 
    tree->leaf[ k ] = i; 
  } else { 
    k = tree->nodes[ i ].child; 
    tree->nodes[ k ].parent = tree->nodes[ k + 1 ].parent = i; 
  } 
} 

Decoding the Symbol 

The final high-level procedure to be discussed here is the routine used to decode an 
incoming symbol. Like the symbol encoder, this routine is short and simple. It starts at 
the root node of the tree and reads in a single bit at a time. As each bit is read in, one of 
the two children of the node is selected based on whether the input bit is a one or a zero. 
Eventually, this leads the routine to a leaf node.  

When the leaf node is reached, we have decoded a symbol. The only possible 
complication at this point is if the decoded symbol is an escape code. If so, the symbol 
encoded by the encoder did not yet appear in the Huffman tree. This means that the next 
eight bits in the stream will contain an unencoded version of the symbol. If this is the 
case, the input routine is called to get the plain-text version of the symbol. 

current_node = ROOT_NODE; 
while ( !tree->nodes[ current_node ].child_is_leaf ) { 
  current_node = tree->nodes[ current_node ].child; 
  current_node += InputBit( input ); 
} 
c = tree->nodes[ current_node ].child; 
if ( c == ESCAPE ) { 
  c = (int) InputBits( input, 8 ); 
  add_new_node( tree, c ); 
} 
return( c ); 

Either the decoded symbol or the escaped plain version of the symbol is passed back to 
the calling program where it can be placed in the output file. The hard work will come 
after the symbol is decoded, when the tree has to be updated to reflect the newly arrived 
symbol.  



The Code 

The code for the Adaptive Huffman compressor is listed next. This single module is 
contained on the source disk in the file AHUFF.C. Building the compression routine 
requires that you compile this file and link it with the utility routines discussed in the last 
chapter: BITIO.C, ERRHAND.C, and MAIN-C.C. To build the decompression routine 
you substitute MAIN-E.C. The two arguments for both programs are simply an input file 
followed by an output file.  

/*************************** Start of AHUFF.C ************************/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <ctype.h> 
#include "bitio.h" 
#include "errhand.h" 
 
char *CompressionName = "Adaptive Huffman coding, with escape codes"; 
char *Usage           = "infile outfile"; 
 
#define END_OF_STREAM      256 
#define ESCAPE             257 
#define SYMBOL_COUNT       258 
#define NODE_TABLE_COUNT   ( ( SYMBOL_COUNT * 2 ) - 1 ) 
#define ROOT_NODE          0 
#define MAX_WEIGHT         0X8000 
#define TRUE               1 
#define FALSE              0 
 
*/ 
* This data structure is all that is needed to maintain an adaptive 
* Huffman tree for both encoding and decoding.  The leaf array is a 
* set of indices into the nodes that indicate which node is the 
* parent of a symbol.  For example, to encode 'A', we would find the 
* leaf node by way of leaf[ 'A' ].  The next_free_node index is used 
* to tell which node is the next one in the array that can be used. 
* Since nodes are allocated when characters are read in for the first 
* time, this pointer keeps track of where we are in the node array. 
* Finally, the array of nodes is the actual Huffman tree.  The child 
* index is either an index pointing to a pair of children, or an 
* actual symbol value, depending on whether 'child_is_leaf' is true 
* or false. 
*/ 
 
typedef struct tree { 
  int leaf[ SYMBOL_COUNT ]; 
  int next_free_node; 
  struct node { 
    unsigned int weight; 
    int parent; 
    int child_is_leaf; 
    int child; 
  } nodes [ NODE_TABLE_COUNT ]; 
} TREE; 



 
/* 
* The Tree used in this program is a global structure.  Under other 
* circumstances it could just as well be a dynamically allocated 
* structure built when needed, since all routines here take a TREE 
* pointer as an argument. 
*/ 
 
TREE Tree; 
 
/* 
* Function prototypes for both ANSI C compilers and their K&R breth- 
* ren. 
*/ 
 
#ifdef __STDC__ 
void CompressFile( FILE *input, BIT_FILE *output, int argc, 
                   char *argv[] ); 
void ExpandFile( BIT_FILE *input, FILE *output, int argc, 
                 char *argv[] ); 
void InitializeTree( TREE *tree ); 
void EncodeSymbol( TREE *tree, unsigned int c, BIT_FILE *output ); 
int DecodeSymbol( TREE *tree, BIT_FILE *input ); 
void UpdateModel( TREE *tree, int c ); 
void RebuildTree( TREE *tree ); 
void swap_nodes( TREE *tree, int i, int j ); 
void add_new_node( TREE *tree, int c ); 
void PrintTree( TREE *tree ); 
void print_codes( TREE *tree ); 
void print_code( TREE *tree, int c ); 
void calculate_rows( TREE *tree, int node, int level ); 
int calculate_columns( TREE *tree, int node, int starting_guess ); 
int find_minimum_column( TREE *tree, int node, int max_row ); 
void rescale_columns( int factor ); 
 
#else 
 
void CompressFile(); 
void ExpandFile(); 
void InitializeTree(); 
void EncodeSymbol(); 
int DecodeSymbol(); 
void UpdateModel(); 
void RebuildTree(); 
void swap_nodes(); 
void add_new_node(); 
 
#endif 
 
/* 
* The high level view of the compression routine is very simple. 
* First, we initialize the Huffman tree, with just the ESCAPE and 
* END_OF_STREAM symbols.  Then, we sit in a loop, encoding symbols, 
* and adding them to the model.  When there are no more characters 
* to send, the special END_OF_STREAM symbol is encoded.  The decoder 
* will later be able to use this symbol to know when to quit. 
*/ 



 
void CompressFile( input, output, argc, argv ) 
FILE *input; 
BIT_FILE *output; 
int argc; 
char *argv[]; 
{ 
  int c; 
 
  InitializeTree( &Tree ); 
  while ( ( c = getc( input ) ) != EOF ) { 
    EncodeSymbol( &Tree, c, output ); 
    UpdateModel( &Tree, c ); 
  } 
  EncodeSymbol( &Tree, END_OF_STREAM, output ); 
  while ( argc— > 0 ) { 
    printf( "Unused argument:  %s\n", *argv ); argv++; 
 
   } 
} 
 
/* 
* The Expansion routine looks very much like the compression routine. 
* It first initializes the Huffman tree, using the same routine as 
* the compressor did.  It then sits in a loop, decoding characters and 
* updating the model until it reads in an END_OF_STREAM symbol.  At 
* that point, it is time to quit. 
*/ 
 
void ExpandFile( input, output, argc, argv ) 
BIT_FILE *input; 
FILE *output; 
int argc; 
char *argv[]; 
{ 
     int c; 
     while ( argc–– > 0 ) 
       printf( "Unused argument:  %s\n", *argv++ ); 
     InitializeTree( &Tree ); 
     while ( ( c = DecodeSymbol( &Tree, input ) ) != END OF STREAM ) { 
       if ( putc( c, output ) == EOF ) 
         fatal_error( "Error writing character" ); 
       UpdateModel( & Tree, c ); 
     } 
} 
 
/* 
* When performing adaptive compression, the Huffman tree starts out 
* very nearly empty.  The only two symbols present initially are the 
* ESCAPE symbol and the END_OF_STREAM symbol.  The ESCAPE symbol has to 
* be included so we can tell the expansion program that we are 
* transmitting a previously unseen symbol.  The END_OF_STREAM symbol 
* is here because it is greater than eight bits, and our ESCAPE 
* sequence only allows for eight bit symbols following the ESCAPE 
* code. 
* 
* In addition to setting up the root node and its two children, this 



* routine also initializes the leaf array.  The ESCAPE and 
* END_OF_STREAM leaves are the only ones initially defined, the rest 
* of the leaf elements are set to -1 to show that they aren't present 
* in the Huffman tree yet. 
*/ 
 
void InitializeTree( tree ) 
TREE *tree; 
{ 
     int i; 
 
     tree->nodes[ ROOT_NODE ].child           = ROOT_NODE + 1; 
     tree->nodes[ ROOT_NODE ].child_is_leaf   = FALSE; 
     tree->nodes[ ROOT_NODE ].weight          = 2; 
     tree->nodes[ ROOT_NODE ].parent          = -1; 
 
     tree->nodes[ ROOT_NODE + 1 ].child           = END_OF_STREAM; 
     tree->nodes[ ROOT_NODE + 1 ].child_is_leaf   = TRUE; 
     tree->nodes[ ROOT_NODE + 1 ].weight          = 1; 
     tree->nodes[ ROOT_NODE + 1 ].parent          = ROOT_NODE; 
     tree->leaf[ END_OF_STREAM ]                      = ROOT_NODE + 1; 
 
     tree->nodes[ ROOT_NODE + 2 ].child           = ESCAPE; 
     tree->nodes[ ROOT_NODE + 2 ].child_is_leaf   = TRUE; 
     tree->nodes[ ROOT_NODE + 2 ].weight          = 1; 
     tree->nodes[ ROOT_NODE + 2 ].parent          = ROOT_NODE; 
     tree->leaf[ ESCAPE ]                         = ROOT_NODE + 2; 
     tree->next_free_node                         = ROOT_NODE + 3; 
 
     for ( i = 0 ; i < END_OF_STREAM ; i++ ) 
         tree->leaf[ i ] = -1; } 
 
/* 
* This routine is responsible for taking a symbol, and converting 
* it into the sequence of bits dictated by the Huffman tree.  The 
* only complication is that we are working our way up from the leaf 
* to the root, and hence are getting the bits in reverse order.  This 
* means we have to rack up the bits in an integer and then send them 
* out after they are all accumulated.  In this version of the program, 
* we keep our codes in a long integer, so the maximum count is set 
* to an arbitrary limit of 0x8000.  It could be set as high as 65535 
* if desired. 
*/ 
 
void EncodeSymbol( tree, c, output ) 
TREE *tree; 
unsigned int c; 
BIT_FILE *output; 
{ 
     unsigned long code; 
     unsigned long current_bit; 
     int code_size; 
     int current_node; 
 
     code = 0; 
     current_bit = 1; 
     code_size = 0; 



     current node = tree->leaf[ c ]; 
     if ( current node == -1 ) 
       current_node = tree->leaf[ ESCAPE ]; 
     while ( current_node != ROOT_NODE ) { 
       if ( ( current_node & 1 ) == 0 ) 
         code | = current_bit; 
       current_bit <<= 1; 
       code_size++; 
       current_node = tree->nodes[ current_node ].parent; 
     }; 
     OutputBits( output, code, code_size ); 
     if ( tree->leaf[ c ] == -1 ) { 
       OutputBits( output, (unsigned long) c, 8 ); 
       add_new_node( tree, c ); 
     } 
} 
 
/* 
* Decoding symbols is easy.  We start at the root node, then go down 
* the tree until we reach a leaf.  At each node, we decide which 
* child to take based on the next input bit.  After getting to the 
* leaf, we check to see if we read in the ESCAPE code.  If we did, 
* it means that the next symbol is going to come through in the next 
* eight bits, unencoded.  If that is the case, we read it in here, 
* and add the new symbol to the table. 
*/ 
 
int DecodeSymbol( tree, input ) 
TREE *tree; 
BIT_FILE *input; 
{ 
     int current_node; 
     int c; 
 
     current_node = ROOT_NODE; 
     while ( !tree->nodes[ current_node ].child_is_leaf ) { 
       current_node = tree->nodes[ current_node ].child; 
       current_node += InputBit( input ); 
     } 
     c = tree->nodes[ current_node ].child; 
     if ( c == ESCAPE ) { 
       c = (int) InputBits( input, 8 ); 
       add_new_node( tree, c ); 
     } 
     return( c ); 
} 
 
/* 
* UpdateModel is called to increment the count for a given symbol. 
* After incrementing the symbol, this code has to work its way up 
* through the parent nodes, incrementing each one of them.  That is 
* the easy part.  The hard part is that after incrementing each 
* parent node, we have to check to see if it is now out of the proper 
* order.  If it is, it has to be moved up the tree into its proper 
* place. 
*/ 
void UpdateModel( tree, c ) 



TREE *tree; 
int c; 
{ 
     int current_node; 
     int new_node; 
 
     if ( tree->nodes[ ROOT_NODE].weight == MAX_WEIGHT ) 
       RebuildTree( tree ); 
     current_node = tree->leaf[ c ]; 
     while ( current_node != -1 ) { 
       tree->nodes[ current_node ].weight++; 
       for ( new_node = current_node ; new_node > ROOT_NODE ; 
                         new_node–– ) 
         if ( tree->nodes[ new_node - 1 ].weight >= 
            tree->nodes[ current_node ].weight ) 
            break; 
       if ( current_node != new_node ) { 
         swap_nodes( tree, current_node, new_node ); 
         current_node = new_node; 
       } 
       current_node = tree->nodes[ current_node ].parent; 
     } 
} 
 
/* 
* Rebuilding the tree takes place when the counts have gone too 
* high.  From a simple point of view, rebuilding the tree just means 
* that we divide every count by two.  Unfortunately, due to truncation 
* effects, this means that the tree's shape might change.  Some nodes 
* might move up due to cumulative increases, while others may move 
* down. 
*/ 
void RebuildTree( tree ) 
TREE *tree; 
{ 
     int i; 
     int j; 
     int k; 
     unsigned int weight; 
 
/* 
* To start rebuilding the table, I collect all the leaves of the 
* Huffman tree and put them in the end of the tree.  While I am doing 
* that, I scale the counts down by a factor of 2. 
*/ 
     printf( "R" ); 
     j = tree->next_free_node - 1; 
     for ( i = j ; i >= ROOT_NODE ; i–– ) { 
       if ( tree->nodes[ i ].child_is_leaf ) { 
         tree->nodes[ j ] = tree->nodes[ i ]; 
         tree->nodes[ j ].weight = ( tree->nodes[ j ].weight + 1 ) / 2; 
         j––; 
       } 
     } 
 
/* 
* At this point, j points to the first free node.  I now have all the 



* leaves defined, and need to start building the higher nodes on the 
* tree.  I will start adding the new internal nodes at j.  Every time 
* I add a new internal node to the top of the tree, I have to check 
* to see where it really belongs in the tree.  It might stay at the 
* top, but there is a good chance I might have to move it back down. 
* If it does have to go down, I use the memmove() function to scoot 
* everyone bigger up by one node. 
*/ 
 
     for ( i = tree->next_free_node - 2 ; j >= ROOT_NODE; 
           i -= 2, j–– ) { 
       k = i + 1; 
       tree->nodes[ j ].weight = tree->nodes[ i ].weight + 
                                 tree->nodes[ k ].weight; 
       weight = tree->nodes[ j ].weight; 
       tree->nodes[ j ].child_is_leaf = FALSE; 
       for ( k = j + 1 ; weight < tree->nodes[ k ].weight ; k++ ) 
         ; 
       k––; 
       memmove( &tree->nodes[ j ], &tree->nodes[ j + 1 ], 
              ( k - j ) * sizeof( struct node ) ); 
       tree->nodes[ k ].weight = weight; 
       tree->nodes[ k ].child = i; 
       tree->nodes[ k ].child_is_leaf = FALSE; 
     } 
/* 
* The final step in tree reconstruction is to go through and set up 
* all of the leaf and parent members.  This can be safely done now 
* that every node is in its final position in the tree. 
*/ 
   for ( i = tree->next_free_node - 1 ; i >= ROOT_NODE ; i–– ) { 
     if ( tree->nodes[ i ].child_is_leaf ) { 
       k = tree->nodes[ i ].child; 
       tree->leaf[ k ] = i; 
     } else { 
       k = tree->nodes[ i ].child; 
       tree->nodes[ k ].parent = tree->nodes[ k + 1 ].parent = i; 
     } 
   } 
} 
/* 
* Swapping nodes takes place when a node has grown too big for its 
* spot in the tree.  When swapping nodes i and j, we rearrange the 
* tree by exchanging the children under i with the children under j. 
 
void swap_nodes( tree, i, j ) 
TREE *tree; 
int i; 
int j; 
{ 
 
     struct node temp; 
 
     if ( tree->nodes [ i ].child_is_leaf ) 
          tree->leaf[ tree->nodes[ i ].child ] = j; 
     else { 
          tree->nodes[ tree->nodes[ i ].child ].parent = j; 



          tree->nodes[ tree->nodes[ i ].child + 1 ].parent = j; 
     } 
     if ( tree->nodes[ j ].child_is_leaf ) 
          tree->leaf[ tree->nodes[ j ].child ] = i; 
     else { 
          tree->nodes[ tree->nodes[ j ].child ].parent = i; 
          tree->nodes[ tree->nodes[ j ].child + 1 ].parent = i; 
     } 
     temp = tree->nodes[ i ]; 
     tree->nodes[ i ] = tree->nodes[ j ]; 
     tree->nodes[ i ].parent = temp.parent; 
     temp.parent = tree->nodes[ j ].parent; 
     tree->nodes[ j ] = temp; 
} 
/* 
* Adding a new node to the tree is pretty simple.  It is just a matter 
* of splitting the lightest-weight node in the tree, which is the 
* highest valued node.  We split it off into two new nodes, one of 
* which is the one being added to the tree.  We assign the new node a 
* weight of 0, so the tree doesn't have to be adjusted.  It will be 
* updated later when the normal update process occurs.  Note that this 
* code assumes that the lightest node has a leaf as a child.  If this 
* is not the case, the tree would be broken. 
*/ 
void add_new_node( tree, c ) 
TREE *tree; 
int c; 
{ 
   int lightest_node; 
   int new_node; 
   int zero_weight_node; 
 
   lightest_node = tree->next_free_node - 1; 
   new_node = tree->next_free_node; 
   zero_weight_node = tree->next_free_node + 1; 
   tree->next_free_node += 2; 
 
   tree->nodes[ new_node ] = tree->nodes[ lightest_node ]; 
   tree->nodes[ new_node ].parent = lightest_node; 
   tree->leaf[ tree->nodes[ new_node ].child ]    = new_node; 
 
   tree->nodes[ lightest_node ].child             = new_node; 
   tree->nodes[ lightest_node ].child_is_leaf     = FALSE; 
 
   tree->nodes[ zero_weight_node ].child           = c; 
   tree->nodes[ zero_weight_node ].child_is_leaf   = TRUE; 
   tree->nodes[ zero_weight_node ].weight          = 0; 
   tree->nodes[ zero_weight_node ].parent          = lightest_node; 
 
/************************* End of AHUFF.C ****************************/ 
 

 

 



Chapter 5 
Huffman One Better: Arithmetic Coding  
The last two chapters show that Huffman coding uses knowledge about information 
content to efficiently encode symbols. If the probability of a symbol’s appearance in a 
message is known, Huffman techniques can encode that symbol using a minimal number 
of bits. Huffman coding has been proven the best fixed-length coding method available.  

Difficulties 

Huffman codes have to be an integral number of bits long, and this can sometimes be a 
problem. If the probability of a character is 1/3, for example, the optimum number of bits 
to code that character is around 1.6 bits. Huffman coding has to assign either one or two 
bits to the code, and either choice leads to a longer compressed message than is 
theoretically possible.  

This non optimal coding becomes a noticeable problem when the probability of a 
character is very high. If a statistical method could assign a 90 percent probability to a 
given character, the optimal code size would be 0.15 bits. The Huffman coding system 
would probably assign a 1-bit code to the symbol, which is six times longer than 
necessary. 

This would be a problem when compressing two-color images, like those coming from a 
fax machine. Since there are only two colors, an ordinary coding method would assign 
the 1 bit to one color and the 0 bit to the other. Since both codes have only a single bit, 
Huffman coding is not going to be able to compress this data at all. No matter how high 
the probability of one of the bits, we are still going to have to encode it using one bit. 

The conventional solution to this problem is to group the bits into packets and apply 
Huffman coding. But this weakness prevents Huffman coding from being a universal 
compressor. 

Arithmetic Coding: A Step Forward 

Only in the last fifteen years has a respectable candidate to replace Huffman coding been 
successfully demonstrated: arithmetic coding. Arithmetic coding bypasses the idea of 
replacing an input symbol with a specific code. It replaces a stream of input symbols with 
a single floating-point output number. More bits are needed in the output number for 
longer, complex messages. This concept has been known for some time, but only recently 
were practical methods found to implement arithmetic coding on computers with fixed-
sized registers.  

The output from an arithmetic coding process is a single number less than 1 and greater 
than or equal to 0. This single number can be uniquely decoded to create the exact stream 
of symbols that went into its construction. To construct the output number, the symbols 



are assigned a set probabilities. The message “BILL GATES,” for example, would have a 
probability distribution like this: 

Character  Probability  

SPACE  1/10  
A  1/10  
B  1/10  
E  1/10  
G  1/10  
I  1/10  
L  2/10  
S  1/10  
T  1/10  

Once character probabilities are known, individual symbols need to be assigned a range 
along a “probability line,” nominally 0 to 1. It doesn’t matter which characters are 
assigned which segment of the range, as long as it is done in the same manner by both the 
encoder and the decoder. The nine-character symbol set used here would look like the 
following:  

Character  Probability  Range  

SPACE  1/10  0.00 [gte] r > 0.10  
A  1/10  0.10 [gte] r > 0.20  
B  1/10  0.20 [gte] r > 0.30  
E  1/10  0.30 [gte] r > 0.40  
G  1/10  0.40 [gte] r > 0.50  
I  1/10  0.50 [gte] r > 0.60  
L  2/10  0.60 [gte] r > 0.80  
S  1/10  0.80 [gte] r > 0.90  
T  1/10  0.90 [gte] r > 1.00  

Each character is assigned the portion of the 0 to 1 range that corresponds to its 
probability of appearance. Note that the character “owns” everything up to, but not 
including, the higher number. So the letter T in fact has the range .90 to .9999…  



The most significant portion of an arithmetic-coded message belongs to the first 
symbols—or B, in the message “BILL GATES.” To decode the first character properly, 
the final coded message has to be a number greater than or equal to .20 and less than .30. 
To encode this number, track the range it could fall in. After the first character is encoded, 
the low end for this range is .20 and the high end is .30. 

During the rest of the encoding process, each new symbol will further restrict the possible 
range of the output number. The next character to be encoded, the letter I, owns the 
range .50 to .60 in the new subrange of .2 to .3. So the new encoded number will fall 
somewhere in the 50th to 60th percentile of the currently established range. Applying this 
logic will further restrict our number to .25 to .26. The algorithm to accomplish this for a 
message of any length is shown here: 

low = 0.0; 
high = 1.0; 
while ( ( c = getc( input ) ) != EOF ) { 
    range = high - low; 
    high = low + range * high_range( c ); 
    low = low + range * low_range( c ); 
} 
output ( low ); 

Following this process to its natural conclusion with our message results in the following 
table:  

New Character  Low value  High Value  

 0.0  1.0  
B  0.2  0.3  
I  0.25  0.26  
L  0.256  0.258  
L  0.2572  0.2576  
SPACE  0.25720  0.25724  
G  0.257216  0.257220  
A  0.2572164  0.2572168  
T  0.25721676  0.2572168  
E  0.257216772  0.257216776  
S  0.2572167752  0.2572167756  

So the final low value, .2572167752, will uniquely encode the message “BILL GATES” 
using our present coding scheme.  



Given this encoding scheme, it is relatively easy to see how the decoding process 
operates. Find the first symbol in the message by seeing which symbol owns the space 
our encoded message falls in. Since .2572167752 falls between .2 and .3, the first 
character must be B. Then remove B from the encoded number. Since we know the low 
and high ranges of B, remove their effects by reversing the process that put them in. First, 
subtract the low value of B, giving .0572167752. Then divide by the width of the range 
of B, or .1. This gives a value of .572167752. Then calculate where that lands, which is in 
the range of the next letter, I. The algorithm for decoding the incoming number is shown 
next: 

number = input_code(); 
for ( ; ; ) { 
    symbol = find_symbol_straddling_this_range( number ); 
    putc( symbol ); 
    range = high_range( symbol ) - low_range( symbol ); 
    number = number - low_range( symbol ); 
    number = number / range; 
} 

I have conveniently ignored the problem of how to decide when there are no more 
symbols left to decode. This can be handled either by encoding a special end-of-file 
symbol or by carrying the stream length with the encoded message. In the example in this 
chapter, as elsewhere in the book, I carry along a special end-of-stream symbol that tells 
the decoder when it is out of symbols. The decoding algorithm for the “BILL GATES” 
message will proceed as shown:  

Encoded Number  Output Symbol  Low  High  Range  

0.2572167752  B  0.2  0.3  0.1  
0.572167752  I  0.5  0.6  0.1  
0.72167752  L  0.6  0.8  0.2  
0.6083876  L  0.6  0.8  0.2  
0.041938  SPACE  0.0  .1  0.1  
0.41938  G  0.4  0.5  0.1  
0.1938  A  0.2  0.3  0.1  
0.938  T  0.9  1.0  0.1  
0.38  E  0.3  0.4  0.1  
0.8  S  0.8  0.9  0.1  
0.0      

In summary, the encoding process is simply one of narrowing the range of possible 
numbers with every new symbol. The new range is proportional to the predefined 



probability attached to that symbol. Decoding is the inverse procedure, in which the 
range is expanded in proportion to the probability of each symbol as it is extracted.  

Practical Matters 

Encoding and decoding a stream of symbols using arithmetic coding is not too 
complicated. But at first glance it seems completely impractical. Most computers support 
floating-point numbers of around 80 bits. So do you have to start over every time you 
encode ten or fifteen symbols? Do you need a floating-point processor? Can machines 
with different floating-point formats communicate through arithmetic coding?  

As it turns out, arithmetic coding is best accomplished using standard 16-bit and 32-bit 
integer math. Floating-point math is neither required nor helpful. What is required is an 
incremental transmission scheme in which fixed-size integer state variables receive new 
bits at the low end and shift them out at the high end, forming a single number that can be 
as long as necessary, conceivably millions or billions of bits. 

Earlier, we saw that the algorithm works by keeping track of a high and low number that 
brackets the range of the possible output number. When the algorithm first starts, the low 
number is set to 0 and the high number is set to 1. The first simplification made to work 
with integer math is to change the 1 to .999 …, or .111… in binary. Mathematicians 
agree that .111… binary is exactly the same as 1 binary, and we take their assurance at 
face value. It simplifies encoding and decoding. 

To store these numbers in integer registers, first justify them so the implied decimal point 
is on the left side of the word. Then load as much of the initial high and low values as 
will fit into the word size we are working with. My implementation uses 16-bit unsigned 
math, so the initial value of high is 0xFFFF, and low is 0. We know that the high value 
continues with Fs forever, and the low continues with zeros forever; so we can shift those 
extra bits in with impunity when needed. 

If you imagine our “BILL GATES” example in a five-decimal digit register (I use 
decimal digits in this example for clarity), the decimal equivalent of our setup would look 
like what follows on the next page. 

HIGH:  99999 implied digits => 999999999... 
LOW:  00000 implied digits => 000000000... 

To find the new range of numbers, apply the encoding algorithm from the previous 
section. First, calculate the range between the low and high values. The difference 
between the two registers will be 100000, not 99999. This is because we assume the high 
register has an infinite number of 9s added to it, so we need to increment the calculated 
difference. We then compute the new high value using the formula from the previous 
section:  

high = low + high_range(symbol) 



In this case, the high range was .30, which gives a new value for high of 30000. Before 
storing the new value of high, we need to decrement it, once again because of the implied 
digits appended to the integer value. So the new value of high is 29999. The calculation 
of low follows the same procedure, with a resulting new value of 20000. So now high and 
low look like this:  

high:  29999 (999...) 
low:  20000 (000...) 

At this point, the most significant digits of high and low match. Due to the nature of our 
algorithm, high and low can continue to grow closer together without quite ever matching. 
So once they match in the most significant digit, that digit will never change. We can 
now output that digit as the first digit of our encoded number. This is done by shifting 
both high and low left by one digit and shifting in a 9 in the least significant digit of high. 
The equivalent operations are performed in binary in the C implementation of this 
algorithm.  

As this process continues, high and low continually grow closer together, shifting digits 
out into the coded word. The process for our “BILL GATES” message is shown next. 

 High  Low  Range  Cumulative Output  

Initial state  99999  00000  100000   
Encode B (0.2—0.3)  29999  20000    
Shift out 2  99999  00000  10000  .2  
Encode I (0.5—0.6)  59999  50000   .2  
Shift out 5  99999  00000  100000  .25  
Encode L (0.6—0.8)  79999  60000  20000  .25  
Encode L (0.6—0.8)  75999  72000   .25  
Shift out 7  59999  20000  40000  .257  
Encode SPACE (0.0—0.1)  23999  20000   .257  
Shift out 2  39999  00000  40000  .2572  
Encode G (0.4—0.5)  19999  16000   .2572  
Shift out 1  99999  60000  40000  .25721  
Encode A (0.1—0.2)  67999  64000   .25721  
Shift out 6  79999  40000  40000  .257216  
Encode T (0.9—1.0)  79999  76000   .257216  
Shift out 7  99999  60000  40000  .2572167  
Encode E (0.3—0.4)  75999  72000   .2572167  
Shift out 7  59999  20000  40000  .25721677  
Encode S (0.8—0.9)  55999  52000   .25721677  



Shift out 5  59999  20000   .257216775  
Shift out 2     .2572167752  
Shift out 0     .25721677520  

After all the letters are accounted for, two extra digits need to be shifted out of either the 
high or low value to finish the output word. This is so the decoder can properly track the 
input data. Part of the information about the data stream is still in the high and low 
registers, and we need to shift that information to the file for the decoder to use later.  

A Complication 

This scheme works well for incrementally encoding a message. Enough accuracy is 
retained during the double-precision integer calculations to ensure that the message is 
accurately encoded. But there is potential for a loss of precision under certain 
circumstances.  

If the encoded word has a string of 0s or 9s in it, the high and low values will slowly 
converge on a value, but they may not see their most significant digits match immediately. 
High may be 700004, and low may be 699995. At this point, the calculated range will be 
only a single digit long, which means the output word will not have enough precision to 
be accurately encoded. Worse, after a few more iterations, high could be 70000, and low 
could be 69999. 

At this point, the values are permanently stuck. The range between high and low has 
become so small that any iteration through another symbol will leave high and low at 
their same values. But since the most significant digits of both words are not equal, the 
algorithm can’t output the digit and shift. It seems to have reached an impasse. 

You can defeat this underflow problem by preventing things from ever getting that bad. 
The original algorithm said something like, “If the most significant digit of high and low 
match, shift it out.” If the two digits don’t match, but are now on adjacent numbers, a 
second test needs to be applied. If high and low are one apart, we test to see if the second 
most significant digit in high is a 0 and if the second digit in low is a 9. If so, it means we 
are on the road to underflow and need to take action. 

Head off underflow with a slightly different shift operation. Instead of shifting the most 
significant digit out of the word, delete the second digits from high and low and shift the 
rest of the digits left to fill the space. The most significant digit stays in place. Then set an 
underflow counter to remember that we threw away a digit and aren’t quite sure whether 
it was going to be a 0 or a 9. This process is shown here: 

 Before  After  



High:  40344  43449  
Low:  39810  38100  
Underflow:  0  1  

After every recalculation, check for underflow digits again if the most significant digit 
don’t match. If underflow digits are present, we shift them out and increment the counter.  

When the most significant digits do finally converge to a single value, output that value. 
Then output the underflow digits previously discarded. The underflow digits will all be 9s 
or 0s, depending on whether high and low converged on the higher or lower value. In the 
C implementation of this algorithm, the underflow counter keeps track of how many ones 
or zeros to output. 

Decoding 

In the “ideal” decoding process, we had the entire input number to work with, and the 
algorithm had to do things like “divide the encoded number by the symbol probability.” 
In practice, we can’t perform an operation like that on a number that could be billions of 
bytes long. As in the encoding process, however, the decoder can operate using 16- and 
32-bit integers for calculations.  

Instead of using just two numbers, high and low, the decoder has to use three numbers. 
The first two, high and low, correspond exactly to the high and low values maintained by 
the encoder. The third number, code, contains the current bits being read in from the 
input bit stream. The code value always falls between the high and low values. As they 
come closer and closer to it, new shift operations will take place, and high and low will 
move back away from code. 

The high and low values in the decoder will be updated after every symbol, just as they 
were in the encoder, and they should have exactly the same values. By performing the 
same comparison test on the upper digit of high and low, the decoder knows when it is 
time to shift a new digit into the incoming code. The same underflow tests are performed 
as well. 

In the ideal algorithm, it was possible to determine what the current encoded symbol was 
just by finding the symbol whose probabilities enclosed the present value of the code. In 
the integer math algorithm, things are somewhat more complicated. In this case, the 
probability scale is determined by the difference between high and low. So instead of the 
range being between .0 and 1.0, the range will be between two positive 16-bit integer 
counts. Where the present code value falls along that range determines current probability. 
Divide (value - low) by (high - low + 1) to get the actual probability for the present 
symbol. 



Where’s the Beef? 

It is not immediately obvious why this encoding process is an improvement over 
Huffman coding. It becomes clear when we examine a case in which the probabilities are 
a little different. If we have to encode the stream “AAAAAAA,” and the probability of A 
is known to be .9, there is a 90 percent chance that any incoming character will be the 
letter A. We set up our probability table so that A occupies the .0 to . 9 range, and the 
end-of-message symbol occupies the .9 to 1 range. The encoding process is shown next:  

New Character  Low value  High value  

 0.0  1.0  
A  0.0  0.9  
A  0.0  0.81  
A  0.0  0.729  
A  0.0  0.6561  
A  0.0  0.59049  
A  0.0  0.531441  
A  0.0  0.4782969  
END  0.43046721  0.4782969  

Now that we know the range of high and low values, all that remains is to pick a number 
to encode this message. The number .45 will make this message uniquely decode to 
“AAAAAAA.” Those two decimal digits take slightly less than seven bits to specify, 
which means we have encoded eight symbols in less than eight bits! An optimal Huffman 
message would have taken a minimum of nine bits.  

To take this point to an even further extreme, I set up a test that had only two symbols. In 
it, 0 had a 16382/16383 probability, and an end-of-file symbol had a 1/16383 probability. 
I then created a file filled with 100,000 0s. After compression using arithmetic coding, 
the output file was only three bytes long! The minimum size using Huffman coding 
would have been 12,501 bytes. This is obviously a contrived example, but it shows that 
arithmetic coding compresses data at rates much better than one bit per byte when the 
symbol probabilities are right. 

The Code 

The code supplied with this chapter in ARITH.C is a simple module that performs 
arithmetic compression and decompression using a simple order 0 model. It works 
exactly like the non-adaptive Huffman coding program in Chapter 3. It first makes a 
single pass over the data, counting the symbols. The data is then scaled down to make the 



counts fit into a single, unsigned character. The scaled counts are saved to the output file 
for the decompressor to get at later, then the arithmetic coding table is built. Finally, the 
compressor passes through the data, compressing each symbol as it appears. When done, 
the end-of-stream character is sent out, the arithmetic coder is flushed, and the program 
exits.  

The Compression Program 

The compression portion of this program is shown shortly. The main module is called by 
the utility version of MAIN-E.C., which will have already taken care of opening files, 
parsing arguments, etc. Once we get to the compression phase of the program, things are 
ready to go.  

The compressor code breaks down neatly into three sections. The first two lines initialize 
the model and the encoder. The while loop consists of two lines, which together with the 
line following the loop perform the compression, and the last three lines shut things down. 

build_model( input, output->file ); 
initialize_arithmetic_encoder(); 
 
while ( ( c = getc( input ) ) ! = EOF ) { 
  convert_int_to_symbol( c, &s ); 
  encode_symbol( output, &s ); 
} 
convert_int_to_symbol( END_OF_STREAM, &s ); 
encode_symbol( output, &s ); 
flush_arithmetic_encoder( output ); 
OutputBits( output, OL, 16 ); 

The build_model() routine has several responsibilities. It makes the first pass over the 
input data to count all the characters. It scales down the counts to fit in unsigned 
characters, then it takes those counts and builds the range table used by the coder. Finally, 
it writes the counts to the output file so the decompressor will have access to them later.  

The initialize arithmetic encoder routine is fairly simple. It just sets up the high- and low-
integer variables used during the encoding. The encoding loop calls two different routines 
to encode the symbol. The first, convert_int_to_symbol(), takes the character read in 
from the file and looks up the range for the given symbol. The range is then stored in the 
symbol object, which has the structure shown: 

typedef struct { 
  unsigned short int low_count; 
  unsigned short int high_count; 
  unsigned short int scale; 
} SYMBOL; 

These three values are all that are needed for the symbol to be encoded using the 
arithmetic encoder. The low-count and high-count values uniquely define where on the 0 
to 1 range the symbol lies, and the scale value tells what the total span of the 0 to 1 scale 



is. If 1,000 characters had been counted in a text file, for example, the low_count and 
high_count for A might be 178 and 199, and the scale would be 1,000. This would 
indicate that on the 0 to 1 number scale, A would own the range .178 to .199.  

Once the symbol object has been defined, it can be passed to the encoder. The arithmetic 
encoder needs only those three items to process the symbol and update the output number. 
It has the high- and low-range values and the underflow count stored internally as static 
variables, and it doesn’t need anything else. 

The way we detached the modeling data from the coding data gives us a convenient 
mechanism for experimenting with new ways of modeling. We just have to come up with 
the numbers that get plugged into the symbol. The encoder doesn’t care how we got those 
numbers as long as they were derived consistently so we can decode the file later. 

When we reach the end of the input file, we encode and send the end-of-stream symbol. 
The decompression program will use it to determine when it is done. To finish, call a 
routine to flush the arithmetic encoder, which takes care of any underflow bits. Finally, 
we have to output an extra sixteen bits. The reason for this is simple. When decoding 
symbols from the input bit stream, the effective bits are in the most significant bit 
position of the input bit registers. To get the bits there, we have to load other bits into the 
lower positions and shift them over. At least 15 insignificant bits are needed to decode 
the last symbol. Outputting 16 bits at the end of the program ensures that the decoder 
won’t get a premature end of file while decoding the input file. 

The Expansion Program 

The main part of the expansion program follows the same pattern. First, the model is set 
up and the arithmetic coder is initialized. In this program, initializing the model means 
reading in the counts from the input file where the compressor put them. Initializing the 
arithmetic decoder means loading the low and high registers with 0000 and FFFF, then 
reading the first 16 bits from the input file into the current code.  

input_counts( input->file ); 
initialize_arithmetic_decoder( input ); 
for ( ; ; ) { 
    get_symbol_scale( &s ); 
    count = get_current_count( &s ); 
    c = convert_symbol_to_int( count, &s ); 
    if ( c == END_OF_STREAM ) 
       break; 
    remove_symbol_from_stream( input, &s ); 
    putc( (char) c, output ); 
} 

The decoding loop is a little more complicated in this routine to keep the modeling and 
decoding separate. First, get the scale for the current model to pass back to the arithmetic 
decoder. The decoder then converts its current input code into a count in the routine 



get_current_count. With the count, we can determine which symbol is the correct one to 
decode. This is done in the routine convert_symbol_to_int().  

Though it seems strange, we don’t remove the encoded symbol from the input bit stream 
till after we actually decode it. The process of removing it involves standard 
modifications of high and low and, if necessary, shifting in new bits from the input 
stream. Finally, the decoded character is written to the output file. 

Initializing the Model 

The model for a program using arithmetic coding needs to have three pieces of 
information for each symbol: the low end of its range, the high end of its range, and the 
scale of the entire alphabet’s range (this is the same for all symbols in the alphabet). 
Since the top of a given symbol’s range is the bottom of the next, we only need to keep 
track of N + 1 numbers for N symbols in the alphabet.  

An example of how the range information would be created is shown for symbols A, B, C, 
D, and E. These symbols have the counts 5, 2, 3, 3, and 8 respectively. The numbers can 
be arranged in any order along the range, if done consistently. 

Range  :  21  
E  :  13  
D  :  10  
C  :  7  
B  :  5  
A  :  0  

In this case, the alphabet has five symbols, and the number of counts to keep track of is 
six. The array is formed by creating the cumulative total at each symbol, starting at zero 
and working up to the range.  

Given a structure like this, it is simple to derive the three items of information that define 
the symbol for the arithmetic encoder. For symbol x in the array, the low count can be 
found at totals[ x ], the high count at totals[ x + 1 ], and the range of scale at totals[ N ], N 
being the number of symbols in the alphabet. 

The routines that do compression create this array. In this program, the array is named 
totals[], and it has 258 elements. The number of symbols in the alphabet is 257, the 
normal 256 plus one for the end-of-stream symbol. 

One additional constraint is placed on these counts. Two things determine the highest 
possible count: the number of bits available in the high and low registers and the number 
of bits in the code values. Since floating-point calculations are performed in fixed-length 
registers, we have to minimize the amount of precision in our calculations so errors do 
not occur. 



As it happens, there are two restrictions on the number of bits used in arithmetic coding: 
(1) the number of bits in the frequency values must be at least two less than the number 
of bits in the high and low registers; and (2) the number of bits in the frequency values 
plus the bits used in either the high and low registers must not exceed the number of bits 
used in arithmetic calculations during the coding process. 

During calculations on the arithmetic registers, the code in this chapter uses unsigned 
long values, which give 32 bits to work with. Since our high and low registers and our 
frequency counts are limited to 16 bits in unsigned short ints, we meet restriction 2 
implicitly. Restriction 1, however, requires more modifications. Since we are only using 
16-bit registers for our high and low values, we have to restrict the highest cumulative 
counts in the totals[] array to no more than 14 bits, or 16,384. 

The code to make sure that our total count of symbols is less than 16,384 is in the 
build_model routine called on initialization of the model. It takes the process a step 
further, scaling the counts down so they all fit in a single byte. This is done so that the 
count data stored in the output file takes a minimal amount of space. 

During the compression phase of the program, the build_model() routine is called to 
perform all the necessary chores associated with the order-0 modeling used in this 
program. The four lines of code from build_model() are shown here: 

count_bytes( input, counts ); 
scale_counts( counts, scaled_counts ); 
output_counts( output, scaled_counts ); 
build_totals( scaled_counts ); 

As you can see above, the build_model routine does no work on its own. It calls a series 
of four worker routines to handle the data for it. The first routine is count_bytes(). It does 
just that, counting all the occurrences of each symbol in the file and maintaining the total 
in an array, like so:  

input_marker = ftell( input ); 
while ( ( c = getc( input )) != EOF ) 
  counts[ c ]++; 
fseek( input, input_marker, SEEK_SET ); 

The code for count_bytes scans the entire input file, then returns the input pointer to 
where it was when called. We assume that the number of counts of a given symbol in the 
file cannot exceed the span of an unsigned long. If this is not true, other measures will 
need to be taken to avoid overflow of the counts[] array elements.  

After the array has been counted, the counts have to be scaled down. This is done in the 
scale_counts() routine. The first step here is to scale down the unsigned long counts[] 
array to fit in an array of unsigned characters. This stores the counts in less space in the 
output file. The code for this is listed here. 

max_count = 0; 



for ( i = 0 ; i < 256 ; i++ ) 
  if (counts[ i ] > max_count ) 
    max_count = counts[ i ]; 
scale = max_count / 256; 
scale = scale + 1; 
for ( i = 0 ; i < 256 ; i++ ) { 
    scaled_counts[ i ] = (unsigned char ) ( counts[ i ] /scale ); 
    if ( scaled_counts[ i ] == 0 && counts[ i ] != 0 ) 
      scaled_counts[ i ] = 1; 
} 

After this is complete, one more scaling may need to be done. As part of the limitations 
on performing arithmetic coding using fixed-length registers, we have to restrict the total 
of our counts to less than 16,384, or fourteen bits. The second part of scale_counts does 
this with brute force, checking the total, then dividing by either two or four to get the 
correct results. An additional count has to be added because of the single count used by 
the end-of-stream character.  

total = 1; 
for ( i = 0 ; i < 256 ; i++ ) 
  total += scaled_counts[ i ]; 
if ( total > ( 32767 - 256 ) ) 
  scale = 4; 
else if ( total > 16383 ) 
  scale = 2; 
else 
  return; 
for ( i = 0 ; i < 256 ; i ++ ) 
   scaled_counts[ i ] /= scale; 

There is certainly room in the scale_counts() routine for more sophistication. Every time 
we lose some of the accuracy in our counts by scaling, we also lose a certain amount of 
compression. An ideal scaling routine would scale down the counts to fit in the correct 
range while doing as little scaling as possible. The routines listed here don’t work very 
hard at doing that.  

Once the counts have been scaled down to fit in the unsigned character array, the 
output_counts() routine is called to save them to the output file. This program employs 
the same method to store the counts as used in Chapter 3 for the Huffman coding 
example. Instead of storing the entire array of counts, we only store runs on nonzero 
values. For details on this, refer to Chapter 3. 

The last step in building the model is to set up the cumulative totals array in totals[]. This 
is the array used when actually performing the arithmetic coding. The code shown below 
builds that array. Remember that after the totals[] array has been built, the range for 
symbol x is found in totals[ x ] and totals[ x + 1 ]. The range used for the entire alphabet 
is found in totals[ END_OF_STREAM +1 ]. 

totals[ 0 ] = 0; 
for ( i = 0 ; i < END_OF_STREAM ; i++ ) 
  totals[ i + 1 ] = totals[ i ] + scaled_counts[ i ]; 



totals[ END_OF_STREAM + 1 ] = totals[ END_OF_STREAM ] + 1; 

Reading the Model 

For expansion, the code needs to build the same model array in totals[] that was used in 
the compression routine. Since the original file is not available to scan for counts, the 
program reads in the scaled_counts[] array stored in the compressed file. The code that 
accomplishes this is identical to the Huffman expansion code in Chapter 3. Refer to 
Chapter 3 for details on how this code works.  

After the scaled_counts[] array has been read in, the same routine used by the 
compression code can be invoked to build the totals[] array. Calling build_totals() in both 
the compression and expansion routines helps ensure that we are working with the same 
array. 

Initializing the Encoder 

Before compression can begin, we have to initialize the variables that constitute the 
arithmetic encoder. Three 16-bit variables define the arithmetic encoder: low, high, and 
underflow_bits. When the encoder first starts to run, the range of the output floating-point 
number is anywhere between 0 and 1. The low variable is initialized to 0 and the high to 
0xFFFF. These two variables have an implied decimal point just ahead of the most 
significant bit and an infinite trail of ones or zeros. The ones will be shifted into the high 
variable and the zeros into the low.  

low = 0; 
high = 0xffff; 
underflow_bits = 0; 

The Encoding Process 

At this point, the program is ready to begin the actual encoding process. This consists of 
looping through the entire file, reading in a character, determining its range variables, 
then encoding it. After the file has been scanned, the final step is to encode the end-of-
stream symbol.  

while ( ( c = getc( input ) ) !=EOF ) { 
  convert_int_to_symbol( c, &s ); 
  encode_symbol( output, &s ); 
} 
convert_int_to_symbol( END_OF_STREAM, &s ); 
encode_symbol( output, &s ); 

Two routines encode a symbol. The convert_int_to_symbol() routine looks up the 
modeling information for the symbol and retrieves the numbers needed to perform the 
arithmetic coding. This consists of stuffing numbers into the three elements of the 
symbol’s structure, as shown here:  



s->scale = totals[ END_OF_STREAM + 1 ]; 
s->low_count = totals[ c ]; 
s->high_count = totals[ c + 1 ]; 

After the symbol information is present, we are ready to encode the symbol using the 
arithmetic encoding routine. The C code to do this, listed in encode_symbol(), has two 
distinct steps. The first is to adjust the high and low variables based on the symbol data 
passed to the encoder.  

range = (long) ( high-low ) + 1; 
high = low + (unsigned short int) 
       (( range * s->high_count ) / s->scale - 1 ); 
low = low + (unsigned short int) 
       (( range * s->low_count ) / s->scale ); 

The code shown below restricts the range of high and low by the amount indicated in the 
symbol information. The range of the symbol is defined by s->low_count and s-
>high_count. These two counts are measured relative to the s->scale variable. After the 
adjustments are made, low and high will both be greater than or equal to their previous 
values. The range, or the distance between the two, will be less than or equal to its 
previous value.  

for ( ; ; ) { 
  if ( ( high & 0x8000 ) == ( low & 0x8000 ) ) { 
     OutputBit( stream, high & 0x8000 ); 
     while ( underflow_bits > 0 ) { 
       OutputBit( stream, ~high & 0x8000 ); 
       underflow_bits--; 
     } 
  } else if ( ( low & 0x4000 ) && !( high & 0x4000 ) ) { 
    underflow_bits += 1; 
    low &= 0x3fff; 
    high |= 0x4000; 
  } else 
    return 
  low <<= 1; 
  high <<= 1; 
  high |= 1; 
} 

After high and low have been adjusted, the routine needs to shift out any bits available 
for shifting. After a given arithmetic adjustment, it is never certain how many bits will 
need to be shifted out. If the encoded symbol has a very high probability, the number of 
bits will be low. If the encoded symbol has a low probability, the number of bits may be 
high.  

Since the number isn’t known in advance, the encoding routine sits in a loop shifting bits 
until there are no more shifts possible. The routine tests for two conditions to see if 
shifting is necessary. The first occurs when the most significant bits of the low and high 
word are the same. Because of the math being used, once the two bits are identical, they 



will never change. When this occurs, the bit is sent to the output file, and the high and 
low values are shifted. 

Before shifting out the bit found when the most MSBs match, however, we have to 
transmit any underflow bits previously saved up. The underflow bits will be a sequence 
of bits set to the opposite value of the MSB. When we have an underflow, we have a 
binary sequence that ends up looking like that shown above. The number of underflow 
bits is found in the underflow_bits variable. 

high = .100000... 
low  = .011111... 

Which leads to the second condition under which high and low variables require shifting: 
underflow. This occurs when the high and low words are growing dangerously close 
together but have not yet had their most significant bits match, a situation similar to that 
shown above.  

When words begin growing close together like this, the dynamic range becomes 
dangerously low. Test for this condition after determining that the two most significant 
bits don’t match. If they don’t, check to see if the next bit is 0 in the high word and 1 in 
the low word. If they are, perform an underflow shift. 

The underflow shift operation consists of throwing away the underflow bit (the one next 
to the most significant digit), shifting the remaining bits over one by one to fill the gap, 
and incrementing the underflow counter. The code to do this is somewhat opaque, but it 
performs this operation. 

The underflow code takes advantage of the fact that when in danger of underflow, we 
know two things. First, we know that the most significant bit in the high word is 1 and in 
the low word 0. Second, the bit we throw away from the high word is 0 and from the low 
word 1. 

Since we know the value of the highest two bits, we can simplify the shift operation. The 
code used in this chapter toggles the second most significant bit in both the high and low 
registers, then performs the normal shift operation. It looks as though the lower 14 bits 
were shifted left and the MSB was left alone. 

If we check for both possible shift conditions and don’t flag either one, we are done 
shifting bits out and can end the encoding operation. If either of the tests passed, the 
actual shift operation can take place. Both the high and low words are shifted left one bit 
position. The high word has a 1 shifted in to the LSB, and the low word has a 0 shifted in. 
The loop then repeats, outputting and shifting additional bits as necessary. 



Flushing the Encoder 

After encoding, it is necessary to flush the arithmetic encoder. The code for this is in the 
flush_arithmetic_encoder() routine. It outputs two bits and any additional underflow bits 
added along the way.  

The Decoding Process 

Before arithmetic decoding can start, we need to initialize the arithmetic decoder 
variables. While encoding, we had just a high and low variable. Both are maintained by 
the decoder with a code variable, which contains the current bit stream read in from the 
input file.  

During arithmetic decoding, the high and low variables should track exactly the same 
values they had during the encoding process, and the code variable should reflect the bit 
stream as it is read in from the input file. The only exception to this is that the code 
variable has underflow bits taken from it and thrown away, as with the high and low 
variables. 

code = 0; 
for ( i = 0 ; i < 16 ; i++ ) { 
   code <<= 1; 
   code += InputBit( stream ); 
} 
low = 0; 
high = Oxffff; 

This implementation of the arithmetic decoding process requires four separate steps to 
decode each character. The first is to get the current scale for the symbol. This is simply a 
matter of looking in the current model data. In this implementation, the scale is found at 
totals[ END_OF_STREAM + 1 ]. The reason for breaking this out as a separate routine 
rather than coding it in-line is that future expansions to the basic compression program 
may use different modeling techniques. If a different model is used, determining the scale 
of the model could end up being more complex. This happens in the program used in the 
next chapter.  

Once the current scale for the model is known, a second call is made to get the count for 
the current arithmetic code. This involves translating the decoders range, expressed by 
the high and low variables, into the range used by the model, which is in the scale 
variable. 

range = (long) ( high - low ) + 1; 
count = (short int) 
     ((((long) ( code - low ) + 1 ) * s->scale-1 ) / range ); 
return( count ); 

The count returned to the expansion program is in essence a simple translation of the 
code variable from one scale to another. Once the count has been determined, we can 



determine what symbol has been encoded. Since we know the low and high range of the 
count for every symbol in the alphabet, determining which symbol goes with which count 
is just a matter of looking through the counts listed in the totals[] array.  

for ( c = END_OF_STREAM ; count < totals[ c ] ; c–– ) 
   ; 
s->high_count = totals[ c + 1 ]; 
s->low_count = totals[ c ]; 
return( c ); 

The implementation of the convert_symbol_to_int() used here determines the correct 
symbol with brute force. It simply starts looking at the top of the totals[] array for a count 
that fits with the current symbol, and it works down until it finds one that does. This is 
not optimal, since it could take 257 comparisons to locate the correct symbol.  

An improved method of decoding would keep the symbols sorted so that the most 
frequently used symbols would be checked first. This would reduce the average time 
required to locate a symbol, though with random data we would not see much 
improvement. For simplicity, this was not the method used here. 

Once convert_symbol_to_int() locates the correct symbol in the totals[] array, it takes the 
high and low counts and stores them in the symbol variable. They will be used in the next 
step of the decoding process. The correct value of the symbol is then returned to the 
calling program as an int. 

After the correct symbol value is set up in the symbol structure, 
remove_symbol_from_stream() is called. Arithmetic coding is unusual in that it 
determines what the symbol is before it removes the bits associated with it. Then it calls 
the routine that actually removes those bits from the code and sets up the input code for 
the next symbol. 

range = (long)( high - low ) + 1; 
high = low + (unsigned short int) 
       (( range * s->high_count ) / s->scale - 1 ); 
low = low + (unsigned short int) 
       (( range * s->low_count ) / s->scale ); 
for ( ; ; ) { 
  if ( ( high & 0x8000 ) == ( low & 0x8000 ) ) { 
  }  else if ((low & 0x4000) == 0x4000 && (high & 0x4000) == 0 ) { 
     code ^= 0x4000; 
     low &= 0x3fff; 
     high |= 0x4000; 
  }  else 
     return; 
  low <<= 1; 
  high <<= 1; 
  high |= 1; 
  code <<= 1; 
  code += InputBit( stream ); 
} 



The code that removes the symbol from the stream is listed above. It operates almost as a 
mirror image of the encoding routine. It first rescales the high and low variables to their 
new ranges as dictated by the range of the symbol being removed. Then the shifting 
process begins.  

As before, there are two possible reasons to shift in new bits. First, if high and low have 
the same most significant bit, they will be discarded and a new bit will be shifted in as a 
replacement. Second, if high and low don’t have the same MSB, and the second most 
significant bits are threatening underflow, we will discard the second most significant bits 
and shift in new bits. 

If neither of the possible shift criteria are met, we can return, since the effects of the 
symbol have been entirely removed from the input stream. Otherwise, we shift high, low, 
and code. The lowest bit of high gets a 1, the lowest bit of low gets a 0, and the lowest bit 
of code gets a new bit from the input stream. This process continues indefinitely until all 
shifting is complete, at which point we return to the calling routine. 

Summary 

Arithmetic coding seems more complicated than Huffman coding, but the size of the 
program required to implement it is not significantly different. Runtime performance is 
significantly slower than Huffman coding, however, due to the computational burden 
imposed on the encoder and decoder. If squeezing the last bit of compression capability 
out of the coder is important, arithmetic coding will always do as good a job or better, 
than Huffman coding. But careful optimization is needed to get performance up to 
acceptable levels.  

Code 
/************************** Start of ARITH.C *************************/ 
#include <stdio.h> 
#include <stdlib.h> 
#include "errhand.h" 
#include "bitio.h" 
 
/* 
* The SYMBOL structure is what is used to define a symbol in 
* arithmetic coding terms. A symbol is defined as a range between 
* 0 and 1.  Since we are using integer math, instead of using 0 and 1 
* as our end points, we have an integer scale.  The low_count and 
* high_count define where the symbol falls in the range. 
*/ 
 
typedef struct { 
  unsigned short int low_count; 
  unsigned short int high_count; 
  unsigned short int scale; 
} SYMBOL; 
 
/* 
* Internal function prototypes, with or without ANSI prototypes. 



*/ 
 
#ifdef __STDC__ 
 
void build_model( FILE *input, FILE *output ); 
void scale_counts( unsigned long counts[], 
                   unsigned char scaled_counts[] ); 
void build_totals( unsigned char scaled_counts[] ); 
void count_bytes( FILE *input, unsigned long counts[] ); 
void output_counts( FILE *output, unsigned char scaled_counts[] ); 
void input_counts( FILE *stream ); 
void convert_int_to_symbol( int symbol, SYMBOL *s ); 
void get_symbol_scale( SYMBOL *s ); 
int convert_symbol_to_int( int count, SYMBOL *s ); 
void initialize_arithmetic_encoder( void ); 
void encode_symbol( BIT_FILE *stream, SYMBOL *s ); 
void flush_arithmetic_encoder( BIT_FILE *stream ); 
short int get_curret_count( SYMBOL *s ); 
void initialize_arithmetic_decoder( BIT_FILE *stream ): 
void remove_symbol_from_stream( BIT_FILE *stream, SYMBOL * s ); 
#else 
 
void build_model(); 
void scale_counts(); 
void build_totals(); 
void count_bytes(); 
void output_counts(); 
void input_counts(); 
void convert_int_to_symbol(); 
void get_symbol_scale(); 
int convert_symbol_to_int(); 
void initialize_arithmetic_encoder(); 
void encode_symbol(); 
void flush_arithmetic_encoder(); 
short int get_current_count(); 
void initialize_arithmetic_decoder(); 
void remove_symbol_from_stream(); 
 
#endif 
 
#define END_OF_STREAM 256 
short int totals[ 258 ];       /* The cumulative totals */ 
 
char *CompressionName = "Adaptive order 0 model with arithmetic coding"; 
char *Usage           = "in-file out-file\n\n\"; 
 
/* 
* This compress file routine is a fairly orthodox compress routine. 
* It first gathers statistics, and initializes the arithmetic 
* encoder.  It then encodes all the characters in the file, followed 
* by the EOF character.  The output stream is then flushed, and we 
* exit.  Note that an extra two bytes are output.  When decoding an 
* arithmetic stream, we have to read in extra bits.  The decoding 
process 
* takes place in the msb of the low and high range ints, so when we are 
* decoding our last bit we will still have to have at least 15 junk 
* bits loaded into the registers.  The extra two bytes account for 



* that. 
*/ 
 
void CompressFile( input, output, argc, argv ) 
FILE * input; 
BIT_FILE *output; 
int argc; 
char *argv[]; 
{ 
     int c; 
     SYMBOL s; 
 
     build_model( input, output->file ); 
     initialize_arithmetic_encoder(); 
 
     while ( ( c = getc( input ) ) != EOF ) { 
        convert_int_to_symbol( c, &s ); 
        encode_symbol( output, &s ); 
     } 
     convert_int_to_symbol( END_OF_STREAM, &s ); 
     encode_symbol( output, &s ); 
     flush_arithmetic_encoder( output ); 
     OutputBits( output, 0L, 16 ); 
     while ( argc–– > 0 ) { 
       printf( "Unused argument: %s\n", *argv ); 
       argv++; 
     } 
} 
 
/* 
* This expand routine is also very conventional.  It reads in the 
* model, initializes the decoder, then sits in a loop reading in 
* characters.  When we decode an END_OF_STREAM, it means we can close 
* up the files and exit.  Note decoding a single character is a three 
* step process: first we determine what the scale is for the current 
* symbol by looking at the difference between the high and low values. 
* We then see where the current input values fall in that range. 
* Finally, we look in our totals array to find out what symbol is 
* a match. After that is done, we still have to remove that symbol 
* from the decoder.  Lots of work. 
*/ 
 
void ExpandFile( input, output, argc, argv ) 
BIT_FILE *input; 
FILE *output; 
int argc; 
char *argv[]; 
{ 
     SYMBOL s; 
     int c; 
     int count; 
 
     input_counts( input->file ); 
     initialize_arithmetic_decoder( input ); 
     for ( ; ; ) { 
       get_symbol_scale( &s ); 
       count = get_current_count( &s ); 



       c = convert_symbol_to_int( count, &s ); 
       if ( c == END_OF_STREAM ) 
         break; 
       remove_symbol_from_stream( input, &s ); 
       putc( (char) c, output ): 
     } 
     while ( argc–– > 0 ) { 
       printf( "Unused argument:  %s\n", *argv ); 
       argv++; 
     } 
} 
 
/* 
* This is the routine that is called to scan the input file, scale 
* the counts, build the totals array, the output the scaled counts 
* to the output file. 
*/ 
 
void build_model( input, output ) 
FILE *input; 
FILE *output; 
{ 
     unsigned long counts[ 256 ]; 
     unsigned char scaled_counts[ 256 ]; 
     count_bytes( input, counts ); 
     scale_counts( counts, scaled_counts ); 
     output_counts( output, scaled_counts ); 
     build_totals( scaled_counts ); 
} 
 
/* 
* This routine runs through the file and counts the appearances of 
* each character. 
*/ 
#ifndef SEEK_SET 
#define SEEK_SET 0 
#endif 
 
void count_bytes( input, counts ) 
FILE *input; 
unsigned long counts[]; 
{ 
     long input_maker; 
     int i; 
     int c; 
 
     for ( i = 0 ; i < 256; i++ ) 
       counts[ i ] = 0; 
     input_marker = ftell( input ); 
     while ( ( c = getc( input ) ) != EOF ) 
       counts[ c ]++; 
     fseek( input, input_marker, SEEK_SET ); 
} 
 
/* 
* This routine is called to scale the counts down. There are two 
* types of scaling that must be done. First, the counts need to be 



* scaled down so that the individual counts fit into a single unsigned 
* char.  Then, the counts need to be rescaled so that the total of all 
* counts is less than 16384. 
*/ 
 
void scale_counts( counts, scaled_counts ) 
unsigned long counts[]; 
unsigned char scaled_counts[]; 
{ 
     int i; 
     unsigned long max_count; 
     unsigned int total; 
     unsigned long scale; 
 
/* 
* The first section of code makes sure each count fits into a single 
* byte. 
*/ 
 
     max_count = 0; 
     for ( i = 0 ; i < 256 ; i++ ) 
       if ( counts[ i ] > max_count ) 
         max_count = counts[ i ]; 
     scale = max_count / 256; 
     scale = scale + 1; 
     for ( i = 0 ; i < 256 ; i++ ) { 
        scaled_counts[ i ] = (unsigned char ) ( counts[ i ] / scale ); 
        if ( scaled_counts[ i ] == 0 && counts[ i ] != 0 ) 
           scaled_counts[ i ] = 1; 
     } 
/* 
* This next section makes sure the total is less than 16384. 
* I initialize the total to 1 instead of 0 because there will be an 
* additional 1 added in for the END_OF_STREAM symbol; 
*/ 
     total = 1; 
     for ( i = 0 ; i < 256 ; i++ ) 
        total += scaled_counts[ i ]; 
     if ( total > ( 32767 - 256 ) ) 
        scale = 4; 
     else if ( total > 16383 ) 
        scale = 2; 
     else 
       return; 
     for ( i = 0 ; i < 256 ; i++ ) 
       scaled_counts[ i ] /= scale; 
} 
 
/* 
* This routine is used by both the encoder and decoder to build the 
* table of cumulative totals.  The counts for the characters in the 
* file are in the counts array, and we know that there will be a 
* single instance of the EOF symbol. 
*/ 
void build_totals( scaled_counts ) 
unsigned char scaled_counts[]; 
{ 



     int i; 
 
     totals[ 0 ] = 0; 
     for ( i = 0 ; i < END_OF_STREAM ; i++ ) 
       totals[ i + 1 ] = totals[ i ] + scaled_counts[ i ]; 
     totals[ END_OF_STREAM + 1 ] = totals[ END_OF_STREAM ] + 1; 
} 
 
/* 
* In order for the compressor to build the same model, I have to 
* store the symbol counts in the compressed file so the expander can 
* read them in.  In order to save space, I don't save all 256 symbols 
* unconditionally.  The format used to store counts looks like this: 
* 
* start, stop, counts, start, stop, counts, … 0 
* 
* This means that I store runs of counts, until all the non-zero 
* counts have been stored.  At this time the list is terminated by 
* storing a start value of 0.  Note that at least 1 run of counts has 
* to be stored, so even if the first start value is 0, I read it in. 
* It also means that even in an empty file that has no counts, I have 
* to pass at least one count. 
* 
* In order to efficiently use this format, I have to identify runs of 
* non-zero counts.  Because of the format used, I don't want to stop a 
* run because of just one or two zeros in the count stream.  So I have 
* to sit in a loop looking for strings of three or more zero values 
* in a row. 
* 
* This is simple in concept, but it ends up being one of the most 
* complicated routines in the whole program.  A routine that just 
* writes out 256 values without attempting to optimize would be much 
* simpler, but would hurt compression quite a bit on small files. 
* 
*/ 
void output_counts( output, scaled_counts ) 
FILE *output; 
unsigned char scaled_counts[]; 
{ 
     int first; 
     int last; 
     int next; 
     int i; 
 
     first = 0; 
     while ( first < 255 && scaled_counts[ first ] == 0 ) 
               first++; 
/* 
* Each time I hit the start of the loop, I assume that first is the 
* number for a run of non-zero values.  The rest of the loop is 
* concerned with finding the value for last, which is the end of the 
* run, and the value of next, which is the start of the next run. 
* At the end of the loop, I assign next to first, so it starts in on 
* the next run. 
*/ 
     for ( ; first < 256 ; first = next ) { 
       last = first + 1; 



       for ( ; ; ) { 
         for ( ; last < 256 ; last++ ) 
           if ( scaled_counts[ last ] == 0 ) 
             break; 
         last ––; 
         for ( next = last + 1; next < 256 ; next++ ) 
           if ( scaled_counts[ next ] != 0 ) 
             break; 
         if ( next > 255 ) 
           break; 
         if ( ( next - last ) > 3 ) 
           break; 
         last = next; 
     }; 
/* 
* Here is where I output first, last, and all the counts in between. 
*/ 
        if ( putc( first, output ) != first ) 
          fatal_error( "Error writing byte counts\n" ); 
        if ( putc( last, output ) != last ) 
          fatal_error( "Error writing byte counts\n" ); 
        for ( i = first ; i <= last ; i++ ) { 
          if ( putc( scaled_counts[ i ], output ) != 
            (int) scaled_counts[ i ] ) 
            fatal_error( "Error writing byte counts\n" ); 
        } 
     } 
     if ( putc( 0, output ) != 0 ) 
          fatal_error( "Error writing byte counts\n" ); 
} 
 
/* 
* When expanding, I have to read in the same set of counts.  This is 
* quite a bit easier that the process of writing them out, since no 
* decision making needs to be done.  All I do is read in first, check 
* to see if I am all done, and if not, read in last and a string of 
* counts. 
*/ 
 
void input_counts( input ) 
FILE *input; 
{ 
     int first; 
     int last; 
     int i; 
     int c; 
     unsigned char scaled_counts[ 256 ]; 
     for ( i = 0 ; i < 256 ; i++ ) 
       scaled_counts[ i ] = 0; 
     if ( ( first = getc( input ) ) == EOF ) 
       fatal_error( "Error reading byte counts\n" ); 
     if ( ( last = getc( input ) ) == EOF ) 
       fatal_error( "Error reading byte counts\n" ); 
     for ( ; ; ) { 
       for ( i = first ; i <= last ; i++ ) 
         if ( ( c = getc( input ) ) == EOF ) 
           fatal_error( "Error reading byte counts\n" ); 



         else 
            scaled_counts[ i ] = (unsigned int) c; 
       if ( ( first = getc( input ) ) == EOF ) 
         fatal_error( "Error reading byte counts\n" ); 
       if ( first == 0 ) 
         break; 
       if ( ( last = getc( input ) ) == EOF ) 
         fatal_error( "Error reading byte counts\n" ); 
     } 
     build_totals( scaled_counts ); 
} 
 
/* 
* Everything from here down defines the arithmetic coder section 
* of the program. 
*/ 
 
/* 
* These four variables define the current state of the arithmetic 
* coder/decoder.  They are assumed to be 16 bits long.  Note that 
* by declaring them as short ints, they will actually be 16 bits 
* on most 80X86 and 680X0 machines, as well as VAXen. 
*/ 
static unsigned short int code;/* The present input code value     */ 
static unsigned short int low; /* Start of the current code range  */ 
static unsigned short int high;/* End of the current code range    */ 
long underflow_bits:           /* Number of underflow bits pending */ 
 
/* 
* This routine must be called to initialize the encoding process. 
* The high register is initialized to all 1s, and it is assumed that 
* it has an infinite string of 1s to be shifted into the lower bit 
* positions when needed. 
*/ 
void initialize_arithmetic_encoder() { 
     low = 0; 
     high = 0xffff; 
     underflow_bits = 0; 
} 
 
/* 
* At the end of the encoding process, there are still significant 
* bits left in the high and low registers.  We output two bits, 
* plus as many underflow bits as are necessary. 
*/ 
void flush_arithmetic_encoder( stream ) 
BIT_FILE *stream; 
{ 
     OutputBit( stream, low & 0x4000 ); 
     underflow_bits++; 
     while ( underflow_bits–– > 0 ) 
       OutputBit( stream, ~low & 0x4000 ); 
} 
 
/* 
* Finding the low count, high count, and scale for a symbol 
* is really easy, because of the way the totals are stored. 



* This is the one redeeming feature of the data structure used 
* in this implementation. 
*/ 
void convert_int_to_symbol( c, s ) 
int c; 
SYMBOL *s; 
} 
     s->scale = totals[ END_OF_STREAM + 1]; 
     s->low_count = totals[ c ]; 
     s->high_count = totals[ c + 1 ]; 
} 
 
/* 
* Getting the scale for the current context is easy. 
*/ 
void get_symbol_scale( s ) 
SYMBOL *s; 
{ 
     s->scale = totals[ END_OF_STREAM + 1 ]; 
} 
 
/* 
* During decompression, we have to search through the table until 
* we find the symbol that straddles the "count" parameter.  When 
* it is found, it is returned.  The reason for also setting the 
* high count and low count is so that symbol can be properly removed 
* from the arithmetic coded input. 
*/ 
int convert_symbol_to_int( count, s ) 
int count; 
SYMBOL *s; 
{ 
     int c; 
     for ( c = END_OF_STREAM ; count < totals[ c ] ; c–– ) 
        ; 
     s->high_count = totals[ c + 1 ]; 
     s->low_count = totals[ c ]; 
     return( c ); 
} 
 
/* 
* This routine is called to encode a symbol.  The symbol is passed 
* in the SYMBOL structure as a low count, a high count, and a range, 
* instead of the more conventional probability ranges.  The encoding 
* process takes two steps.  First, the values of high and low are 
* updated to take into account the range restriction created by the 
* new symbol.  Then, as many bits as possible are shifted out to 
* the output stream.  Finally, high and low are stable again and 
* the routine returns. 
*/ 
void encode_symbol( stream, s ) 
BIT_FILE *stream; 
SYMBOL *s; 
{ 
  long range; 
/* 
* These three lines rescale high and low for the new symbol. 



*/ 
     range = (long) ( high-low ) + 1; 
     high = low + (unsigned short int) 
                   (( range * s->high_count ) / s->scale - 1 ); 
     low = low + (unsigned short int) 
                   (( range * s->low_count ) / s->scale ); 
/* 
* This loop turns out new bits until high and low are far enough 
* apart to have stabilized. 
*/ 
     for ( ; ; ) { 
/* 
* If this test passes, it means that the MSDigits match, and can 
* be sent to the output stream. 
*/ 
     if ( ( high & 0x8000 ) == (  low & 0x8000 ) ) { 
       OutputBit( stream, high & 0x8000 ); 
       while ( underflow_bits > 0 ) { 
         OutputBit( stream, ~high & 0x8000 ); 
         underflow_bits––; 
       } 
     } 
/* 
* If this test passes, the numbers are in danger of underflow, because 
* the MSDigits don't match, and the 2nd digits are just one apart. 
*/ 
     else if ( ( low & 0x4000 ) && !( high & 0x4000 )) { 
       underflow_bits += 1; 
       low &= 0x3fff; 
       high |= 0x4000; 
     } else 
       return ; 
     low <<= 1; 
     high <<= 1; 
     high |= 1; 
   } 
} 
 
/* 
* When decoding, this routine is called to figure out which symbol 
* is presently waiting to be decoded.  This routine expects to get 
* the current model scale in the s->scale parameter, and it returns 
* a count that corresponds to the present floating point code; 
* 
* code = count / s->scale 
*/ 
short int get_current_count( s ) 
 
SYMBOL *s; 
{ 
     long range; 
     short int count; 
 
     range = (long) ( high - low ) + l; 
     count = (short int) 
             ((((long) ( code - low ) + 1 ) * s->scale-1 ) / range ) ; 
     return( count ); 



} 
 
/* 
* This routine is called to initialize the state of the arithmetic 
* decoder.  This involves initializing the high and low registers 
* to their conventional starting values, plus reading the first 
* 16 bits from the input stream into the code value. 
*/ 
void initialize_arithmetic_decoder( stream ) 
BIT_FILE *stream; 
{ 
     int i; 
     code = 0; 
     for ( i = 0 ; i < 16 ; i++ ) { 
       code <<= 1; 
       code += InputBit( stream ); 
     } 
     low = 0; 
     high = 0xffff; 
} 
 
/* 
* Just figuring out what the present symbol is doesn't remove 
* it from the input bit stream.  After the character has been 
* decoded, this routine has to be called to remove it from the 
* input stream. 
*/ 
void remove_symbol_from_stream( stream, s ) 
BIT_FILE *stream; 
SYMBOL *s; 
{ 
     long range; 
 
/* 
* First, the range is expanded to account for the symbol removal. 
*/ 
     range = (long)( high - low ) + l; 
     high = low + (unsigned short int) 
             (( range * s->high_count ) / s->scale - 1); 
     low = low + (unsigned short int) 
             (( range * s->low_count ) / s->scale ); 
*/ 
* Next, any possible bits are shipped out. 
*/ 
     for ( ; ; ) { 
/* 
* If the MSDigits match, the bits will be shifted out. 
*/ 
     if ( ( high & 0x8000 ) == ( low & 0x8000 ) ) { 
     } 
/* 
* Else, if underflow is threatening, shift out the 2nd MSDigit. 
*/ 
     else if ((low & 0x4000) == 0x4000  && (high & 0x4000) == 0 ) { 
       code ^= 0x4000; 
       low &= 0x3ffff; 
       high |= 0x4000; 



     } else 
/* 
* Otherwise, nothing can be shifted out, so I return. 
*/ 
          return; 
     low <<= 1; 
     high <<= 1; 
     high |= 1; 
     code <<= 1; 
     code += InputBit( stream ); 
   } 
} 
/************************** End of ARITH.C ***************************/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 6 
Statistical Modeling  
The previous three chapters have shown several coding techniques used to compress data. 
The two coding methods disscussed, Huffman and arithmetic coding, can be 
implemented using either the fixed or adaptive approaches, but in all cases a statistical 
model needs to drive them. The chapters which discuss these coding techniques all used a 
simple order-0 model, which provides fairly good compression. This chapter discusses 
how to combine more sophisticated modeling techniques with standard coding methods 
to acheive better compression.  

Higher-Order Modeling 

To compress data using arithmetic or Huffman coding, we need a model of the data 
stream. The model needs to do two things to achieve compression: (1) it needs to 
accurately predict the frequency/probability of symbols in the input data stream, and (2) 
the symbol probabilities generated by the model need to deviate from a uniform 
distribution.  

Accurately predicting the probability of symbols in the input data is an inherent need in 
arithmetic or Huffman coding. This type of coding reduces the number of bits needed to 
encode a character as its probability of appearance increases. If the letter E represents 25 
percent of the input data, it should take only two bits to code. If the letter Z represents 
only .1 percent of the input data, it might take ten bits to code. If the model is not 
generating probabilities accurately, it might take ten bits to code E and two bits to code Z, 
causing data expansion instead of compression. 

The model also needs to make predictions that deviate from a uniform distribution. The 
better the model is at making these predictions, the better the compression ratios will be. 
A model could be created, for example, that assigned all 256 possible symbols a uniform 
probability of 1/256. This model would create an output file exactly the same size as the 
input file, since every symbol would take exactly eight bits to encode. Only by correctly 
finding probabilities that deviate from a normal distribution can the number of bits be 
reduced, leading to compression. The increased probabilities have to accurately reflect 
reality, of course, as prescribed by the first condition. 

It may seem that the probability of a given symbol occurring in a data stream is fixed, but 
this is not quite true. The probability of a character can change quite a bit, depending on 
the model. When compressing a C program, for example, the probability of a new-line 
character in the text might be 1/40, a probability determined by scanning the entire text 
and dividing the number of occurrences of the character by the total number of characters. 
But if a modeling technique looks at a single previous character, the probabilities change. 
In that case, if the previous character were a ‘}’, the probability of a new-line character 
goes up to 1/2. This improved modeling technique leads to better compression, though 
both models were generating accurate probabilities. 



Finite Context Modeling 

The modeling discussed in this chapter is called “finite-context” modeling. It is based on 
a simple idea; calculate the probabilities for each incoming symbol based on the context 
in which the symbol appears. In all of the examples shown here, the context consists of 
nothing more than symbols previously encountered. The “order” of the model refers to 
the number of previous symbols that make up the context.  

The simplest finite-context model would be an order-0 model that calculates the 
probability of each symbol independently of any previous symbols. To implement this 
model, all that is needed is a single table containing the frequency counts for each symbol 
that might be encountered in the input stream. An order-1 model keeps track of 256 
different tables of frequencies, since it needs a separate set of counts for each possible 
context. Similarly, an order-2 model needs to handle 65,536 different tables of contexts. 

The models used in chapters 3, 4, and 5 were all order-0 models. They didn’t take up 
much storage space, and they were simple to manipulate. By confining ourselves to 
order-0 modeling, however, we ensured that our data-compression ratios were relatively 
modest. 

Adaptive Modeling 

It seems logical that as the order of the model increases, compression ratios ought to 
improve as well. The probability of the letter u appearing in the text of this book may 
only be 5 percent, for example, but if the previous context character is q, the probability 
goes up to 95 percent. Predicting characters with high probability lowers the number of 
bits needed, and larger contexts ought to let us make better predictions.  

Unfortunately, as the order of the model increases linearly, the memory consumed by the 
model increases exponentially. With an order 0 model, the space consumed by the 
statistics could be as small as 256 bytes. Once the order of the model increases to 2 or 3, 
even the most cleverly designed models will consume hundreds of kilobytes. 

The conventional way of compressing data is to make a pass over the symbols to gather 
statistics for the model. Then a second pass is made to actually encode the data. The 
statistics are usually carried with the compressed data so the decoder will have a copy. 
This approach obviously has serious problems if the statistics for the model take more 
space than the data to be compressed. 

Adaptive compression is the solution to this problem. In adaptive data compression, both 
the compressor and the decompressor start with the same model. The compressor encodes 
a symbol using the existing model, then it updates the model to account for the new 
symbol using the existing model, then it updates the model to account for the new symbol. 
The decompressor likewise decodes a symbol using the existing model, then it updates 
the model. As long as the algorithm to update the model operates identically for the 



compressor and the decompressor, the process can operate perfectly without needing to 
pass a statistics table from the compressor to the decompressor. 

Adaptive data compression has a slight disadvantage in that it starts compressing with 
less than optimal statistics. By subtracting the cost of transmitting the statistics with the 
compressed data, however, an adaptive algorithm will usually perform better than a fixed 
statistical model. 

Adaptive compression also suffers in the cost of updating the model. When updating the 
count for a particular symbol using arithmetic coding, for example, the update code has 
the potential cost of updating the cumulative counts for all other symbols as well, leading 
to code that on the average performs 128 arithmetic operations for every symbol encoded 
or decoded, using the modeling techniques needed for arithmetic coding. 

Because of high cost in both memory and CPU time, higher-order adaptive models have 
only become practical in perhaps the last ten years. It is ironic that as the cost of disk 
space and memory goes down, the cost of compressing the data stored there also goes 
down. As these costs continue to decline, we will be able to implement even more 
effective programs than are practical today. 

A Simple Example 

The sample program in Chapter 4 used Huffman coding to demonstrate adaptive 
compression. In this chapter, the sample program will use adaptive arithmetic coding. 
When performing finite-context modeling, we need a data structure to describe each 
context used while compressing the data. If we move up from an order to an order-1, for 
example, we will use the previous symbol as a context for encoding the current symbol.  

An array of 256 context arrays is probably the simplest way to create the data structures 
for an order-1 model. As we saw in the last chapter, a simple context model for an 
arithmetic encoder can be created using an array of cumulative counts for each symbol. If 
we have 256 symbols in our alphabet, an array of pointers to 256 different context arrays 
can be created like this: 

int *totals[ 256 ]; 
 
void initialize_model() 
{ 
     int context; 
     int i; 
 
     for (context= 0 ; context < END_OF_STREAM ; context++ ) { 
       totals[ context ] = (int *) calloc( END_OF_STREAM + 2, 
                       sizeof( int ) ); 
       if ( totals[ context ] == NULL ) 
          fatal_error( "Failure allocating context %d", context ); 
       for ( i = 0 ; i <= ( END_OF_STREAM + 1 ) ; i++ ) 
          totals[ context ][ i ] = 1; 
     } 



} 

This code not only creates the 256 context arrays, it also initializes each symbol’s count 
to 1. At this point, we can begin encoding symbols as they come in. The loop for 
encoding the symbols looks similar to the one used for other adaptive programs. Here is 
an order 1 arithmetic compression loop:  

for ( ; ; ) { 
  c = getc( input ); 
  if (c == EOF ) 
    c = END_OF_STREAM; 
  convert_int_to_symbol( c, context, &s ); 
  encode_symbol( output, &s ); 
  if ( c == END_OF_STREAM ) 
    break; 
  update_model( c, context ); 
  context = c; 
} 

This works fairly simply. Instead of just having a single context table, like the code in 
chapter 5, we now have a set of 256 context tables. Every symbol is encoded using the 
context table from the previously seen symbol, and only the statistics for the selected 
context get updated after the symbol is seen. This means we can now more accurately 
predict the probability of a character’s appearance.  

The decoding process for this order 1 code is also very simple, and it looks similar to the 
decoding example from chapter 5. Here is the order 1 expansion loop: 

for ( ; ; ) { 
   get_symbol_scale( context, &s ); 
   count = get_current_count( &s ); 
   c = convert_symbol_to_int( count, context, &s ); 
   remove_symbol_from_stream( input, &s ); 
   if (c == END_OF_STREAM ) 
     break; 
   putc( (char) c, output ); 
   update_model( c, context ); 
   context = c; 
} 

The only difference between this and conventional order-0 code is the addition of the 
context variable, both within the loop and as a parameter to other functions. The 
remaining routines that differ from the code in Chapter 5 are are shown next. The C 
source for this module is included on the program disk.  

void update_model( int symbol, int context ) 
   int i; 
 
   for ( i = symbol + 1 ; i <= ( END_OF_STREAM + 1 ) ; i++ ) 
      totals[ context ][ i ]++; 
   if ( totals[ context ][ END_OF_STREAM + 1 ] < MAXIMUM_SCALE ) 
       return; 



   for ( i = 1 ; i <= ( END_OF_STREAM + 1 ) ; i++ ) { 
      totals[ context ][ i ] /= 2; 
      if ( totals[ context ][ i ] <= totals[ context ][ i - 1 ] ) 
       totals[ context ][ i ] = totals[ context ][ i - 1 ] + 1; 
   } 
} 
 
void convert_int_to_symbol( int c, int context, SYMBOL *s ) 
{ 
  s->scale = totals[ context ][ END_OF_STREAM + ]; 
  s->low_count = totals[ context ][ c ]; 
  s->high_count = totals[ context ][ c + 1 ]; 
} 
 
void get_symbol_scale( int context, SYMBOL *s ) 
{ 
  s->scale = totals[ context][ END_OF_STREAM + 1 ]; 
} 
int convert_symbol_to_int( int count, int context, SYMBOL *s) 
{ 
 
  int c; 
 
   for ( c = 0; count >= totals[ context ][ c + 1 ] ; c++ ) 
     ; 
   s->high_count = totals[ context ][ c + 1 ]; 
   s->low_count = totals[ context ][ c ]; 
   return( c ); 
} 

Using the Escape Code as a Fallback 

The simple order-1 program does in fact do a creditable job of compression, but it has a 
couple of problems to address. First, the model for this program makes it a slow starter. 
Every context starts off with 257 symbols initialized to a single count, meaning every 
symbol starts off being encoded in roughly eight bits. As new symbols are added to the 
table, they will gradually begin to be encoded in fewer bits. This process, however, will 
not happen very quickly.  

For the context table for the letter q, for example, we will probably see a a very high 
number of u symbols. The very first u will have a probability of 1/257, and will 
accordingly be encoded in eight bits. The second u will have a probability of 2/258, but 
will still require over seven bits to encode. In fact, it will take sixteen consecutive u 
symbols with no other appearances before the entropy of the symbol is reduced to even 
four bits. 

The reason for this slow reduction in bit count is obvious. The probability of the u 
symbol is being weighted down by the other 256 symbols in the table. Though they may 
never appear in the message, they need a nonzero count. If their count were reduced to 
zero, we would not be able to encode them if and when they appeared in the message. 



There is a solution to this problem, however, and it is relatively painless. Instead of 
having every symbol appear automatically in every table, start off with a nearly empty 
table and add symbols to the table only as they appear. The q table would have zero 
counts for all the other symbols, giving the first u that appears a low bit count. 

But there is a catch here. If a symbol doesn’t appear in a context table, how will it be 
encoded when it appears in a message? The easiest way to accomplish this is to use an 
escape code. The escape code is a special symbol (much like the end-of-stream symbol) 
that indicates we need to “escape” from the current context. 

When a context issues an escape symbol, we generally fall back to a lower-order context. 
In our next sample program, we escape to the escape context, a context that never gets 
updated. It contains 258 symbols, each of which has a count of 1. This guarantees that 
any symbol encountered in the message can be encoded by outputting an escape code 
from the current context and by encoding the symbol using the escape context.  

How does this affect the example used for the letter u? As it turns out, it makes an 
enormous difference. The first u symbol that took eight bits in the previous example will 
take about eight bits here as well. The escape code takes no bits to encode, and in the 
escape context the u has a 1/257 probability. After that, however, the u is added to the 
table and given a count of 1. The next appearance of u will require only one bit to encode, 
since it has a probability of 1/2. By the time 16 u’s have appeared, and while the previous 
model is still taking four bits to encode it, the escape-driven model will take .06 bits! 

The escape code frees us from burdening our models with characters that may never 
appear. This lets the model adjust rapidly to changing probabilities and quickly reduces 
the number of bits needed to encode high- probability symbols. 

The encoding process for this particular implementation of a multi-order model requires 
only a few modifications to the previous program. The convert_int_to_symbol() routine 
now has to check whether a symbol is present in the given context. If not, the escape code 
is encoded instead, and the function returns the appropriate result to the main encoding 
loop, as shown: 

context = 0; 
initialize_model(); 
initialize_arithmetic_encoder(); 
for ( ; ; ) { 
  c = getc( input ); 
  if ( c == EOF ) 
   c = END_OF_STREAM; 
  escaped = convert_int_to_symbol( c, context, &s ); 
  encode_symbol( output, &s ); 
  if ( escaped ) { 
    convert_int_to_symbol( c, ESCAPE, &s ); 
    encode_symbol( output, &s ); 
  } 
  if ( c == END_OF_STREAM ) 
    break; 



  update_model( c, context ); 
  context = c; 
} 

In the main compression loop shown, the compressor first tries to send the original 
symbol. If the convert_int_to_symbol() routine returns a true, the symbol did not appear 
in the current context, and the routine resends the symbol using the escape context. We 
update just the current context model with the symbol just sent, not the escape model.  

The decompression loop for this program follows a similar pattern. The code shown next 
makes one or two possible passes through the loop, depending on whether an escape code 
is detected. The program for this order-1 context-switching program is on the program 
diskette that accompanies this book. 

context = 0; 
initialize_model(); 
initialize_arithmetic_decoder( input ); 
for ( ; ; ) { 
  last_context = context; 
  do { 
   get_symbol_scale( context, &s ); 
    count = get_current_count( &s ); 
    c = convert_symbol_to_int( count, context, &s ); 
    remove_symbol_from_stream( input, &s ); 
    context = c; 
  } while ( c == ESCAPE ); 
  if ( c == END_OF_STREAM ) 
    break; 
  putc( (char) c, output ); 
  update_model( c, last_context ); 
  context = c; 
} 

Improvements 

Some problems with the method of encoding in ARITH-1.C are the high-cost operations 
associated with the model. Each time we update the counts for symbol c, every count in 
totals[context][] from c up to 256 has to be incremented. An average of 128 increment 
operations have to be performed for every character encoded or decoded. For a simple 
demonstration program like the one shown here, this may not be a major problem, but a 
production program should be modified to be more efficient.  

One way to reduce the number of increment operations is to move the counts for the most 
frequently accessed symbols to the top of the array. This makes the model keep track of 
each symbol’s position in the totals[context] array, but it reduces the number of 
increment operations by an order of magnitude. This is a relatively simple enhancement 
to make to this program. A very good example of a program that uses this technique has 
been published as part of the paper by Ian H. Witten, Neal Radford, and John Cleary, 
“Arithmetic Coding for Data Compression,” Communications of the ACM (June 1987). 



This paper is an excellent source of information regarding arithmetic coding, with some 
sample C source code illustrating the text. 

Highest-Order Modeling 

The previous sample program used order-1 statistics to compress data. It seems logical 
that if we move to higher orders, we should achieve better compression. The importance 
of the escape code becomes even more clear here. When using an order-3 model, we 
potentially have 16 million context tables to work with (actually 256*256*256, or 
16,777,216). We would have to read in an incredible amount of text before those 16 
million tables would have enough statistics to start compressing data, and many of those 
16 million tables will never be used—which means they take up space in our computer’s 
memory for no good reason. When compressing English text, for example, it does no 
good to allocate space for the table QQW. It will never appear.  

The solution to this is, again, to set the initial probabilities of all of the symbols to 0 for a 
given context and to fall back to a different context when a previously unseen symbol 
occurs. So the obvious question is: what do we use as the fallback context after emitting 
an escape code? In the last example, we fell back to a default context called the escape 
context. The escape context was never updated, which meant that using it generally 
would not provide any compression. 

In the higher-order models, there is a better way to compress than just automatically 
falling back to a default context. If an existing context can’t encode a symbol, fall back to 
the next smaller-order context. If our existing context was REQ, for example, and U 
needs to be encoded for the first time, an escape code will be generated. Following that, 
we drop back to an order-2 model to try to encode the character U using the context EQ. 
This continues down through the order-0 context. If the escape code is still generated at 
order-0, we fall back to a special order(-1) context that is never updated and is set up at 
initialization to have a count of 1 for every possible symbol—so it is guaranteed to 
encode every symbol. 

Using this escape-code technique means only a slight modification to the driver program. 
The program (see the code found in ARITH-N.C) now sits in a loop trying to encode its 
characters, as shown here: 

do  { 
    escaped = convert_int_to_symbol( c, &s ); 
    encode_symbol( compressed_file, &s ); 
} while ( escaped ); 

The modeling code keeps track of what the current order is, decrementing it whenever an 
escape is emitted. Even more complicated is the modeling module’s job of keeping track 
of which context table needs to be used for the current order.  



Updating the Model 

ARITH1E.C does a good job of compressing data. But quite a few improvements can still 
be made to this simple statistical method without changing the fundamental nature of its 
algorithm. The rest of this chapter is devoted to discussing those improvements, along 
with a look at a sample compression module, ARITH-N.C, that implements most of them.  

Using the highest-order modeling algorithm requires that instead of keeping just one set 
of context tables for the highest order, we keep a full set of context tables for every order 
up to the highest order. If we are doing order-2 modeling, for example, there will be a 
single order-0 table, 256 order-1 tables, and 65,536 order-2 tables. When a new character 
is encoded or decoded, the modeling code updates one of these tables for each order. In 
the example of U following REQ, the modeling code would update the U counters in the 
order-3 REQ table, the order-2 EQ table, the order-1 Q table, and the order-0 table. The 
code to update all of these tables is shown next: 

for ( order = 0 ; order <= max_order ; order++ ) 
   update_model( order, symbol ); 

A slight modification to this algorithm results in both faster updates and better 
compression. Instead of updating all the different order models for the current context, 
we can instead update only those models actually used to encode the symbol. This is 
called “update exclusion,” since it excludes unused lower-order models from being 
updated. It will generally give a small but noticeable improvement in the compression 
ratio. Update exclusion works since symbols showing up frequently in the higher-order 
models won’t be seen as often in the lower-order models, which means we shouldn’t 
increment the counters in the lower-order models. The modified code for update 
exclusion will look like this:  

for ( order = encoding_order ; order <= max_order ; order++ ) 
   update_model( order, symbol ); 

Escape Probabilities 

When the program first starts encoding a text stream, it will emit quite a few escape 
codes. The number of bits used to encode escape characters will probably have a large 
effect on the compression ratio, particularly in small files. In our first attempts to use 
escape codes, we set the escape count to 1 and left it there, regardless of the state of the 
rest of the context table. Bell, Cleary, and Witten call this “Method A.” Method B sets the 
count for the escape character at the number of symbols presently defined for the context 
table. If eleven different characters have been seen so far, for example, the escape symbol 
count will be set at eleven, regardless of what the counts are.  

Both methods seem to work fairly well. The code in our previous program can easily be 
modified to support either one. Probably the best thing about methods A and B is that 
they are not computationally intensive. Adding the escape symbol to the Method A table 



can be done so that it takes almost no more work to update the table with the symbol than 
without it. 

The next sample program, ARITH-N.C, implements a slightly more complicated escape-
count calculation algorithm. It tries to take into account three different factors when 
calculating the escape probability. First, as the number of symbol defined in the context 
table increases, the escape probability naturally decreases. This reaches its minimum 
when the table has all 256 symbols defined, making the escape probability 0. 

Second, it takes into account a measure of randomness in the table. It calculates this by 
dividing the maximum count in the table by the average count. The higher the ratio, the 
less random the table. The REQ table, for example, may have only three symbols defined: 
U, with a count of 50; u, with a count of 10; and e, with a count of 3. The ratio of U’s 
count, 50, to the average, 21, is fairly high. The U is thus predicted with a relatively high 
amount of accuracy, and the escape probability ought to be lower. In a table where the 
high count was 10 and the average was 8, things would seem a little more random, and 
the escape probability should be higher. 

The third factor taken into account is simply the raw count of how many symbols have 
been seen for the particular table. As the number of symbols increases, the predictability 
of the table should go up, making the escape probability go down. 

The formula I use for calculating the number of counts for the escape symbol is below. 

count = (256 - number of symbols seen)*number of symbols seen 
count = count /(256 * the highest symbol count) 
if count is less than 1 
  count = 1 

The missing variable in this equation is the raw symbol count. This is implicit in the 
calculation, because the escape probability is the escape count divided by the raw count. 
The raw count will automatically scale the escape count to a probability.  

Scoreboarding 

When using highest-order modeling techniques, an additional enhancement, 
scoreboarding, can improve compression efficiency. When we first try to compress a 
symbol, we can generate either the code for the symbol or an escape code. If we generate 
an escape code, the symbol had not previously occurred in that context, so we had a count 
of 0. But we do gain some information about the symbol just by generating an escape. 
We can now generate a list of symbols that did not match the symbol to be encoded. 
These symbols can temporarily have their counts set to 0 when we calculate the 
probabilities for lower-order models. The counts will be reset back to their permanent 
values after the encoding for the particular character is complete. This process is called 
scoreboarding.  



An example of this is shown below. If the present context is HAC and the next symbol is 
K, we will use the tables shown next to encode the K. Without scoreboarding, the HAC 
context generates an escape with a probability of 1/6. The AC context generates an 
escape with a probability of 1/8. The C context generates an escape with a probability of 
1/40, and the “” context finally generates a K with a probability of 1/73. 

“”  “C”  “AC”  “HAC”  
ESC 1  ESC 1  ESC 1  ESC 1  
‘K’ 1  ‘H’ 20  ‘C’ 5  ‘E’ 3  
‘E 40  ‘T’ 11  ‘H’ 2  ‘L’ 1  
‘I’ 22  ‘L’ 5   ‘C’ 1  
‘A 9  ‘A’ 3    

If we use scoreboarding to exclude counts of previously seen characters, we can make a 
significant improvement in these probabilities. The first encoding of an escape from HAC 
isn’t affected, since no characters were seen before. But the AC escape code eliminates 
the C from its calculations, resulting in a probability of 1/3. The C escape code excludes 
the H and the A counts, increasing the probability from 1/40 to 1/17. And finally, the “” 
context excludes the E and A counts, reducing that probability from 1/73 to 1/24. This 
reduces the number of bits required to encode the symbol from 14.9 to 12.9, a significant 
savings.  

Keeping a symbol scoreboard will almost always result in some improvement in 
compression, and it will never make things worse. The major problem with scoreboarding 
is that the probability tables for all of the lower-order contexts have to be recalculated 
every time the table is accessed. This results in a big increase in the CPU time required to 
encode text. Scoreboarding is left in ARITH-N.C. to demonstrate the gains possible when 
compressing text using it. 

Data Structures 

All improvements to the basic statistical modeling assume that higher-order modeling can 
actually be accomplished on the target computer. The problem with increasing the order 
is one of memory. The cumulative totals table in the order-0 model in Chapter 5 occupied 
516 bytes of memory. If we used the same data structures for an order-1 model, the 
memory used would shoot up to 133K, which is still probably acceptable. But going to 
order-2 will increase the RAM requirements for the statistics unit to thirty-four 
megabytes! Since we would like to try orders even higher than 2, we need to redesign the 
data structures that hold the counts.  

To save memory space, we have to redesign the context statistics tables. In Chapter 5, the 
table is about as simple as it can be, with each symbol being used as an index directly 



into a pair of counts. In the order-1 model, the appropriate context tables would be found 
by indexing once into an array of context tables, then indexing again to the symbol in 
question, a procedure like that shown here: 

low_count = totals[ last_char ][ current_char ]; 
high_count = totals[ last_char ][ current_char + 1 ]; 
range = totals[ last_char ][ 256 ]; 

This is convenient, but enormously wasteful. Full context space is allocated even for 
unused tables, and within the tables space is allocated for all symbols, seen or not. Both 
factors waste enormous amounts of memory in higher-order models.  

The solution to the first problem, reserving space for unused contexts, is to organize the 
context tables as a tree. Place the order-0 context table at a known location and use it to 
contain pointers to order-1 context tables. The order-1 context tables will hold their own 
statistics and pointers to order-2 context tables. This continues until reaching the “leaves” 
of the context tree, which contain order_n tables but no pointers to higher orders. Using a 
tree structure can keep the unused pointer nodes set to null pointers until a context is seen. 
Once the context is seen, a table is created and added to the parent node of the tree. 

The second problem is creating a table of 256 counts every time a new context is created. 
In reality, the highest-order contexts will frequently have only a few symbols, so we can 
save a lot of space by only allocating space for symbols seen for a particular context. 

After implementing these changes, we have a set of data structures that look like this: 

     typedef struct { 
       unsigned char symbol; 
       unsigned char counts; 
     } STATS; 
 
     typedef struct { 
       struct context *next; 
     } LINKS; 
 
     typedef struct context { 
       int max_index; 
       STATS *stats; 
       LINKS *links; 
       struct context *lesser_context; 
     } CONTEXT; 

The new context structure has four major elements. The first is the counter, max_index, 
which tells how many symbols are presently defined for this particular context table. 
When a table is first created, it has no defined symbols, and max_index is -1. A 
completely defined table will have a max_index of 255. The max_index variable tells 
how many elements are allocated for the arrays pointed to by stats and links. Stats is an 
array of structures, each containing a symbol and a count for that symbol. If the context 
table is not one of the highest-order tables, it will also have a links array. Each symbol 



defined in the stats array will have a pointer to the next higher-order context table in the 
links table.  

A sample of the context table tree is shown in figure 6.1. The table shown is one that will 
have just been created after the input text “ABCABDABE” when keeping maximum 
order-3 statistics. Just nine input symbols have already generated a fairly complicated 
data structure, but it is orders of magnitude smaller than one consisting of arrays of arrays. 

 
Figure 6.1  A context table tree: “ABCABDABE.” 

One element in this structure that hasn’t been explained is the lesser_context pointer. This 
pointer is needed when using higher-order models. If the modeling code is trying to 
locate an order-3 context table, it first has to scan through the order-0 symbol list looking 
for the first symbol, the match, the order-1 symbol list, and so on. If the symbol lists in 
the lower orders are relatively full, this can be a lengthy process. Even worse, every time 
an escape is generated, the process has to be repeated when looking up the lower-order 
context. These searches can consume an inordinate amount of CPU time.  



The solution to this is to maintain a pointer for each table that points to the table for the 
context one order less. The context table ABC should have its back pointer point to BC, 
for example, which should have a back pointer to C, which should have a pointer to “”, 
the null table. Then the modeling code only needs to keep a pointer to the current highest 
order context. Given that, finding the order-1 context table is simply a matter of 
performing (n-1) pointer operations. 

With the table shown in Figure 6.1, for example, suppose the next incoming text symbol 
is X and the current context is ABE. Without the benefit of the lesser context pointers, I 
have to check the order-3, 2, 1, and 0 tables for X. This takes 15 symbol comparisons and 
three table lookups. Using reverse pointers eliminates all the symbols comparisons and 
performs just three table lookups. 

To update the figure 6.1 context tree to contain an X after ABE, the modeling code has to 
perform a single set of lookups for each order/context. This code is shown in ARITH-N.C 
in the add_character_to_model() routine. Every time a new table is created, it needs to 
have its back pointer created properly at the same time, which requires a certain amount 
of care in the design of update procedures. 

The Finishing Touches: Tables –1 and –2 

The final touch to the context tree in ARITH-N.C is the addition of two special tables. 
The order(-1) table has been discussed previously. This is a table with a fixed probability 
for every symbol. If a symbol is not found in any of the higher-order models, it will show 
up in the order(-1) model. This is the table of last resort. Since it guarantees that it will 
always provide a code for every symbol in the alphabet, we don’t update this table, which 
means it uses a fixed probability for every symbol.  

ARITH-N.C also has a special order(-2) table used for passing control information from 
the encoder to the decoder. The encoder can pass a-1 to the decoder to indicate end-of-
file. Since normal symbols are always defined as unsigned values ranging from 0 to 255, 
the modeling code recognizes a negative number as a special symbol that will generate 
escapes all the way back to the order(-2) table. The modeling code can also determine 
that since -1 is a negative number, the symbol should just be ignored when the 
update_model() code is called. 

Model Flushing 

The creation of the order(-2) model allows us to pass a second control code from the 
encoder to the expander—the flush code, which tells the decoder to flush statistics out of 
the model. The compressor does this when the performance of the model starts to slip. 
The ratio is adjustable and is set in this implementation to 10 percent. When compression 
falls belows this ratio, the model is “flushed” by dividing all counts by two. This gives 
more weight to newer statistics, which should improve the compression.  



In reality the model should probably be flushed whenever the input symbol stream 
drastically changes character. If the program is compressing an executable file, for 
example, the statistics accumulated during the compression of the executable code are 
probably of no value when compressing the program’s data. Unfortunately, it isn’t easy 
to define an algorithm that detects a “change in the nature” of the input. 

Implementation 

Even with the Byzantine data structures used here, the compression and expansion 
programs built around ARITH-N.C have prodigious memory requirements. When 
running on DOS machines limited to 640K, these programs have to be limited to order-1, 
or perhaps order-2 for text that has a higher redundancy ratio.  

To examine compression ratios for higher orders on binary files, there are a couple of 
choices for these programs. First, they can be built using a DOS Extender, such as 
Rational Systems/16M. Or they can be built on a machine that has either a larger address 
space or support for virtual memory, such as Windows 95, VMS, or UNIX. The code 
distributed here was written in an attempt to be portable across all these options. 

Testing shows that with an extra megabyte of extended memory and a DOS Extender, 
virtually any ASCII file can be compressed on a PC using order -3 compression. Some 
binary files require more memory. A UNIX system had no problem with order -3 
compression and turned in the best performance overall in terms of speed. 

Conclusions 

Compression-ratio test show that statistical modeling can perform at least as well as 
dictionary-based methods. But these programs are at present somewhat impractical 
because of their high resource requirements. ARITH-N is fairly slow, compressing data 
with speeds in the range of 1K per second and needing huge amounts of memory to use 
higher-order modeling. As memory becomes cheaper and processors become more 
powerful, however, schemes such as the ones shown here may become practical. They 
could be applied today to circumstances in which either storage or transmission costs are 
extremely high.  

Order-0 adaptive modeling using arithmetic coding could be useful today in situations 
requiring extremely low consumption of memory. The compression ratios might not be as 
good as those gained with sophisticated models, but memory consumption is minimized. 

Enhancement 

The performance of these algorithms could be improved significantly beyond the 
implementation discussed here. The first area for improvement would be in memory 
management. Right now, when the programs run out of memory, they abort. A more 
sensible approach would be to have the programs start with fixed amounts of memory 
available for statistics. When the statistics fill the space, the program should then stop 



updating the tables and just use what it had. This would mean implementing internal 
memory-management routines instead of using the C run-time library routines.  

Another potential improvement could come in the tree structure for the context tables. 
Locating tables through the use of hashing could be quite a bit faster and might require 
less memory. The context tables themselves could also be improved. When a table has 
over 50 percent of the potential symbols defined for it, an alternate data structure could 
be used with the counts stored in a linear array. This would allow for faster indexing and 
would reduce memory requirements. 

Finally, it might be worth trying ways to adaptively modify the order of the model being 
used. When compressing using order-3 statistics, early portions of the input text generate 
a lot of escapes while the statistics tables fill up. It ought to be possible to start encoding 
using order-0 statistics while keeping order-3 statistics. As the table fills up, the order 
used for encoding could be incremented until it reaches the maximum. 

ARITH-N Listing 
/*********************** Start of ARITH-N.C ************************/ 
* * This is the order-n arithmetic coding module used in the final 
* part of chapter 6. 
* 
* Compile with BITIO.C. ERRHAND.C, and either MAIN-C.C OR MAIN-E.C. 
This 
* program should be compiled in large model.  An even better 
alternative 
* is a DOS extender. 
* 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include "errhand.h" 
#include "bitio.h" 
 
/* 
* The SYMBOL structure is what is used to defined a symbol in 
* arithmetic coding terms.  A symbol is defined as a range between 
* 0 and 1.  Since we are using integer math, instead of using 0 and 1 
* as our end points, we have an integer scale.  The low_count and 
* high_count define where the symbol falls in the range. 
*/ 
 
typedef struct { 
     unsigned short int low_count; 
     unsigned short int high_count; 
     unsigned short int scale; 
} SYMBOL; 
 
#define MAXIMUM_SCALE 16383  /* Maximum allowed frequency count */ 
#define ESCAPE   256         /* The escape symbol               */ 
#define DONE (-1)            /* The output stream empty  symbol */ 
#define FLUSH  (-2)          /* The symbol to flush the model   */ 



 
/* 
*  Function prototypes. 
*/ 
 
#ifdef __STDC__ 
 
void initialize_options( int argc, char **argv ); 
int check_compression( FILE *input, BIT_FILE *output ); 
void initialize_model( void ); 
void update_model( int symbol ); 
int convert_int_to_symbol( int symbol, SYMBOL *s ); 
void get_symbol_scale( SYMBOL *s ); 
int convert_symbol_to_int( int count, SYMBOL *s ); 
void add_character_to_model( int c ); 
void flush_model( void ); 
void initialize_arithmetic_decoder( BIT_FILE *stream ) ; 
void remove_symbol_from_stream( BIT_FILE *stream, SYMBOL *s ); 
void initialize_arithmetic_encoder( void ); 
void encode_symbol( BIT_FILE *stream, SYMBOL *s ); 
void flush_arithmetic_encoder( BIT_FILE *stream ); 
short int get_current_count( SYMBOL *s ); 
 
#else 
 
void initialize_options(); 
int check_compression(); 
void initialize_model(); 
void update_model(); 
int convert_int_to_symbol(); 
void get_symbol_scale(); 
int convert_symbol_to_int(); 
void add_character_to_model(); 
void flush_model(); 
void initialize_arithmetic_decoder(); 
void remove_symbol_from_stream(); 
void initialize_arithmetic_encoder(); 
void encode_symbol(); 
void flush_arithmetic_encoder(); 
short int get_current_count(); 
 
#endif 
 
char *CompressionName = "Adaptive order n model with arithmetic coding"; 
char *Usage           = "in-file out-file [ -o order ]\n\n"; 
int max_order         = 3; 
 
/* 
* The main procedure is similar to the main found in ARITH1E.C.  It has 
* to initialize the coder and the model.  It then sits in a loop 
reading 
* input symbols and encoding them.  One difference is that every 256 
* symbols a compression check is performed.  If the compression ratio 
* falls below 10%, a flush character is encoded.  This flushes the 
encod 
* ing model, and will cause the decoder to flush its model when the 
* file is being expanded.  The second difference is that each symbol is 



* repeatedly encoded until a successful encoding occurs.  When trying 
to 
* encode a character in a particular order, the model may have to 
* transmit an ESCAPE character.  If this is the case, the character has 
* to be retransmitted using a lower order.  This process repeats until 
a 
* successful match is found of the symbol in a particular context. 
* Usually this means going down no further than the order -1 model. 
* However, the FLUSH and DONE symbols drop back to the order -2 model. 
* 
*/ 
 
void CompressFile( input, output, argc, argv ) 
FILE *input; 
BIT_FILE *output; 
 
int argc; 
char *argv[]; 
{ 
     SYMBOL s; 
     int c; 
     int escaped; 
     int flush = 0; 
     long int text_count = 0; 
     initialize_options( argc, argv ); 
     initialize_model(); 
     initialize-arithmetic_encoder(); 
     for ( ; ; ) { 
       if ( ( ++text_count & 0x0ff ) == 0 ) 
         flush = check_compression( input, output ); 
       if ( !flush ) 
         c = getc( input ); 
       else 
         c = FLUSH; 
       if ( c == EOF ) 
         c = DONE; 
       do { 
         escaped = convert_int_to_symbol( c, &s); 
         encode_symbol( output, &s ); 
       } while ( escaped ); 
       if ( c == DONE ) 
         break; 
       if ( c == FLUSH ) { 
         flush_model(); 
         flush = 0; 
       } 
       update_model( c ); 
       add_character_to_model( c ); 
     } 
     flush_arithmetic_encoder( output ); 
} 
/* 
* The main loop for expansion is very similar to the expansion 
* routine used in the simpler compression program, ARITH1E.C.  The 
* routine first has to initialize the the arithmetic coder and the 
* model.  The decompression loop differs in a couple of respect. 
* First of all, it handles the special ESCAPE character, by 



* removing them from the input bit stream but just throwing them 
* away otherwise.  Secondly, it handles the special FLUSH character. 
* Once the main decoding loop is done, the cleanup code is called, 
* and the program exits. 
* 
*/ 
void ExpandFile( input, output, argc, argv ) 
BIT_FILE *input; 
FILE *output; 
int argc; 
char *argv[]; 
{ 
     SYMBOL s; 
     int c; 
     int count; 
 
     initialize_options( argc, argv ); 
     initialize_model(); 
     initialize_arithmetic_decoder( input ); 
     for ( ; ; ) { 
       do { 
         get_symbol_scale( &s ); 
         count = get_current_count( &s ); 
         c = convert_symbol_to_int( count, &s ); 
         remove_symbol_from_stream( input, &s ); 
       } while ( c == ESCAPE ); 
       if ( c == DONE ) 
         break; 
       if ( c != FLUSH ) 
         putc( (char) c, output ); 
       else 
         flush_model(); 
       update_model( c ); 
       add_character_to_model( c ); 
     } 
} 
 
/* 
* This routine checks for command line options.  At present, the only 
* option being passed on the command line is the order. 
*/ 
 
void initialize_options( argc, argv ) 
int argc; 
char *argv[]; 
{ 
     while ( argc–– > 0 ) { 
       if ( strcmp( *argv, "-o" ) == 0 ) { 
         argc––; 
         max_order = atoi( *++argv ); 
       } else 
         printf( "Uknown argument on command line: %s\n", *argv ); 
       argc––; 
       argv++; 
     } 
} 
 



/* 
* This routine is called once every 256 input symbols.  Its job is to 
* check to see if the compression ratio falls below 10%.  If the 
* output size is 90% of the input size, it means not much compression 
* is taking place, so we probably ought to flush the statistics in the 
* model to allow for more current statistics to have greater impact. 
* This heuristic approach does seem to have some effect. 
*/ 
 
int check_compression( input, output ) 
FILE *input; 
BIT_FILE *output; 
{ 
     static long local_input_marker = 0L; 
     static long local_output_marker = 0L; 
     long total_input_bytes; 
     long total_output_bytes; 
     int local_ratio; 
 
     total_input_bytes = ftell( input ) - local_input_marker; 
     total_output_bytes = ftell( output->file ); 
     total_output_bytes -= local_output_marker; 
     if ( total_output_bytes == 0 ) 
       total_output_bytes = 1; 
     local_ratio = (int)( ( total_output_bytes * 100 ) / 
                                   total_input_bytes ); 
     local_input_marker = ftell( input ); 
     local_output_marker = ftell( output->file ); 
     return( local_ratio > 90 ); 
} 
 
/* 
* 
* The next few routines contain all of the code and data used to 
* perform modeling for this program.  This modeling unit keeps track 
* of all contexts from 0 up to max_order, which defaults to 3.  In 
* addition, there is a special context -1 which is a fixed model used 
* to encode previously unseen characters, and a context -2 which is 
* used to encode EOF and FLUSH messages. 
* 
* Each context is stored in a special CONTEXT structure, which is 
* documented below.  Context tables are not created until the context 
* is seen, and they are never destroyed. 
* 
*/ 
 
/* 
* A context table contains a list of the counts for all symbols 
* that have been seen in the defined context.  For example, a 
* context of "Zor" might have only had 2 different characters 
* appear.  't' might have appeared 10 times, and '1' might have 
* appeared once.  These two counts are stored in the context 
* table.  The counts are stored in the STATS structure.  All of 
* the counts for a given context are stored in and array of STATS. 
* As new characters are added to a particular contexts, the STATS 
* array will grow.  Sometimes the STATS array will shrink 
* after flushing the model. 



*/ 
typedef struct { 
     unsigned char symbol; 
     unsigned char counts; 
} STATS; 
 
/* 
* Each context has to have links to higher order contexts.  These 
* links are used to navigate through the context tables.  For example, 
* to find the context table for "ABC", I start at the order 0 table, 
* then find the pointer to the "A" context table by looking through 
* the LINKS array.  At that table, we find the "B" link and go to 
* that table.  The process continues until the destination table is 
* found.  The table pointed to by the LINKS array corresponds to the 
* symbol found at the same offset in the STATS table.  The reason that 
* LINKS is in a separate structure instead of being combined with 
* STATS is to save space.  All of the leaf context nodes don't need 
* next pointers, since they are in the highest order context.  In the 
* leaf nodes, the LINKS array is a NULL pointer. 
*/ 
typedef struct { 
     struct context *next; 
} LINKS; 
 
/* 
* The CONTEXT structure holds all of the known information about 
* a particular context.  The links and stats pointers are discussed 
* immediately above here.  The max_index element gives the maximum 
* index that can be applied to the stats or link array.  When the 
* table is first created, and stats is set to NULL, max_index is set 
* to -1.  As soon as single element is added to stats, max_index is 
* incremented to 0. 
* 
* The lesser context pointer is a navigational aid.  It points to 
* the context that is one less than the current order.  For example, 
* if the current context is "ABC", the lesser_context pointer will 
* point to "BC".  The reason for maintaining this pointer is that 
* this particular bit of table searching is done frequently, but 
* the pointer only needs to be built once, when the context is 
* created. 
*/ 
typedef struct context { 
     int max_index; 
     LINKS *links; 
     STATS *stats; 
     struct context *lesser_context; 
} CONTEXT; 
/* 
* *contexts[] is an array of current contexts.  If I want to find 
* the order 0 context for the current state of the model.  I just 
* look at contexts[0].  This array of context pointers is set up 
* every time the model is updated. 
*/ 
CONTEXT **contexts; 
 
/* 
* current_order contains the current order of the model.  It starts 



* at max_order, and is decremented every time an ESCAPE is sent.  It 
* will only go down to -1 for normal symbols, but can go to -2 for 
* EOF and FLUSH. 
*/ 
int current_order; 
 
/* 
* This table contains the cumulative totals for the current context. 
* Because this program is using exclusion, totals has to be calculated 
* every time a context is used.  The scoreboard array keeps track of 
* symbols that have appeared in higher order models, so that they 
* can be excluded from lower order context total calculations. 
*/ 
 
short int totals[ 258 ]; 
char scoreboard[ 256 ]; 
 
/* 
* Local procedure declarations for modeling routines. 
*/ 
#ifdef __STDC__ 
void update_table( CONTEXT *table, int symbol ); 
void rescale_table( CONTEXT *table ); 
void totalize_table( CONTEXT *table ); 
CONTEXT *shift_to_next_context( CONTEXT *table, int c, int order ); 
CONTEXT *allocate_next_order_table( CONTEXT *table, 
                                    int symbol, 
                                    CONTEXT *lesser_context ); 
void recursive_flush( CONTEXT *table ); 
#else 
void update_table(); 
void rescale_table(); 
void totalize_table(); 
CONTEXT *shift_to_next_context(); 
CONTEXT *allocate_next_order_table(); 
void recursive_flush(); 
#endif 
 
/* 
* This routine has to get everything set up properly so that 
* the model can be maintained properly.  The first step is to create 
* the *contexts[] array used later to find current context tables. 
* The *contexts[] array indices go from -2 up to max_order, so 
* the table needs to be fiddled with a little.  This routine then 
* has to create the special order -2 and order -1 tables by hand, 
* since they aren't quite like other tables.  Then the current 
* context is set to \0, \0, \0, ... and the appropriate tables 
* are built to support that context.  The current order is set 
* to max_order, the scoreboard is cleared, and the system is 
* ready to go. 
*/ 
 
void initialize_model() 
{ 
     int i; 
     CONTEXT *null_table; 
     CONTEXT *control_table; 



 
     current_order = max_order; 
     contexts = (CONTEXT **) calloc( sizeof( CONTEXT * ), 10 ); 
     if ( contexts == NULL ) 
       fatal_error( "Failure #1:  allocating context table!" ); 
     context += 2; 
     null_table = (CONTEXT *) calloc( sizeof( CONTEXT ), 1 ); 
     if ( null_table == NULL ) 
       fatal_error( "Failure #2:  allocating null table!" ); 
     null_table->max_index = -1; 
     contexts[ -1 ] = null_table; 
     for ( i = 0 ; i <= max_order ; 1++ ) 
        contexts[ i ] = allocate_next_order_table( contexts[ i-1 ], 
                                                   0, 
                                                   contexts[ i-1 ] ); 
     free( (char *) null_table->stats ); 
     null_table->stats = 
       (STATS &) calloc( sizeof( STATS ), 256 ); 
     if ( null_table->stats == NULL ) 
       fatal_error( "Failure #3:  allocating null table!" ); 
     null_table->max_index = 255; 
     for ( i=0 ; i < 256 ; i++ ) { 
       null_table->stats[ i ].symbol = (unsigned char) i; 
       null_table->stats[ i ].counts = 1; 
     } 
 
     control_table = (CONTEXT *) calloc( sizeof(CONTEXT), 1 ); 
     if ( control_table == NULL ) 
       fatal_error( "Failure #4:  allocating null table!" ); 
     control_table->stats = 
       (STATS *) calloc( sizeof( STATS ), 2 ); 
     if ( control_table->stats == NULL ) 
       fatal_error( "Failure #5:  allocating null table!" ); 
     contexts[ -2 ] = control_table; 
     control_table->max_index = 1; 
     control_table->stats[ 0 ].symbol = -FLUSH; 
     control_table->stats[ 0 ].counts = 1; 
     control_table->stats[ 1 ].symbol =– DONE; 
     control_table->stats[ 1 ].counts = 1; 
 
     for ( i = 0 ; i < 256 ; i++ ) 
       scoreboard[ i ] = 0; 
} 
 
/* 
* This is a utility routine used to create new tables when a new 
* context is created.  It gets a pointer to the current context, 
* and gets the symbol that needs to be added to it.  It also needs 
* a pointer to the lesser context for the table that is to be 
* created.  For example, if the current context was "ABC", and the 
* symbol 'D' was read in, add_character_to_model would need to 
* create the new context "BCD".  This routine would get called 
* with a pointer to "BC", the symbol 'D', and a pointer to context 
* "CD".  This routine then creates a new table for "BCD", adds it 
* to the link table for "BC", and gives "BCD" a back pointer to 
* "CD".  Note that finding the lesser context is a difficult 
* task, and isn't done here.  This routine mainly worries about 



* modifying the stats and links fields in the current context. 
*/ 
 
CONTEXT *allocate_next_order_table( table, symbol, lesser_context ) 
CONTEXT *table; 
int symbol; 
CONTEXT *lesser_context; 
{ 
     CONTEXT *new_table; 
     int i; 
     unsigned int new_size; 
 
     for ( i = 0 ; i <= table->max_index ; i++ ) 
       if (table->stats[ i ].symbol == (unsigned char) symbol ) 
         break; 
       if ( i > table->max_index ) { 
         table->max_index++; 
         new_size = sizeof( LINKS ); 
         new_size *= table->max_index + 1; 
         if ( table->links == NULL ) 
           table->links = (LINKS *) calloc( new_size, 1 ); 
         else 
           table->links = (LINKS *) 
             realloc( (char *) table->links, new_size ); 
         new_size = sizeof( STATS ); 
         new_size *= table->max_index + 1; 
         if ( table->stats == NULL ) 
           table->stats = (STATS *) calloc( new_size, 1 ); 
         else 
           table->stats = (STATS *) 
             realloc( (char *) table->stats, new_size ); 
         if ( table->links == NULL ) 
           fatal_error( "Failure #6:  allocating new table" ); 
         if ( table->stats == NULL ) 
           fatal_error( "Failure #7:  allocating new table" ); 
         table->stats[ i ].symbol = (unsigned char) symbol; 
         table->stats[ i ].counts = 0; 
     } 
     new_table = (CONTEXT *) calloc(sizeof( CONTEXT ), 1 ); 
     if ( new_table == NULL ) 
       fatal_error( "Failure #8:  allocating new table" ); 
     new_table->max_index = -1; 
     table->links[ i ].next = new_table; 
     new_table->lesser_context = lesser_context; 
     return( new_table ); 
} 
 
/* 
* This routine is called to increment the counts for the current 
* contexts.  It is called after a character has been encoded or 
* decoded.  All it does is call update_table for each of the 
* current contexts, which does the work of incrementing the count. 
* This particular version of update_model() practices update exclusion, 
* which means that if lower order models weren't used to encode 
* or decode the character, they don't get their counts updated. 
* This seems to improve compression performance quite a bit. 
* To disable update exclusion, the loop would be changed to run 



* from 0 to max_order, instead of current_order to max_order. 
*/ 
void update_model( symbol ) 
int symbol; 
{ 
 
     int i; 
     int local_order; 
 
     if ( current_order < 0 ) 
       local_order = 0; 
     else 
       local_order = current_order; 
     if ( symbol >= 0 ) { 
       while ( local_order <= max_order ) { 
         if ( symbol >= 0 ) 
           update_table( contexts[ local_order ], symbol ); 
         local_order++; 
        } 
     } 
     current_order = max_order; 
     for ( i = 0 ; i < 256 ; i++ ) 
       scoreboard[ i ] = 0; 
} 
 
/* 
* This routine is called to update the count for a particular symbol 
* in a particular table.  The table is one of the current contexts, 
* and the symbol is the last symbol encoded or decoded.  In principle 
* this is a fairly simple routine, but a couple of complications make 
* things a little messier.  First of all, the given table may not 
* already have the symbol defined in its statistics table.  If it 
* doesn't, the stats table has to grow and have the new guy added 
* to it.  Secondly, the symbols are kept in sorted order by count 
* in the table so that the table can be trimmed during the flush 
* operation.  When this symbol is incremented, it might have to be 
moved 
* up to reflect its new rank.  Finally, since the counters are only 
* bytes, if the count reaches 255, the table absolutely must be 
rescaled 
* to get the counts back down to a reasonable level. 
*/ 
 
void update_table( table, symbol ) 
CONTEXT *table; 
int symbol; 
{ 
     int i; 
     int index; 
     unsigned char temp; 
     CONTEXT *temp_ptr; 
     unsigned int new_size; 
/* 
* First, find the symbol in the appropriate context table.  The first 
* symbol in the table is the most active, so start there. 
*/ 
 



     index = 0; 
     while ( index <= table->max_index && 
          table->stats[index].symbol != (unsigned char) symbol ) 
       index++; 
     if ( index > table->max_index ) { 
       table->max_index++; 
       new_size = sizeof( LINKS ); 
       new_size *= table->max_index + 1; 
       if ( current_order < max_order ) { 
         if ( table->max_index == 0 ) 
           table->links - (LINKS *) calloc( new_size, 1 ); 
         else 
           table->links = (LINKS *) 
             realloc( (char *) table->links, new_size ); 
         if (  table->links == NULL ) 
           fatal_error( "Error #9:  reallocating table space!" ); 
         table->links[ index ].next = NULL; 
     } 
     new_size = sizeof( STATS ); 
     new_size *= table->max_index + 1; 
     if (table->max_index==0) 
       table->stats = (STATS *) calloc( new_size, 1 ); 
     else 
       table->stats = (STATS *) 
         realloc( (char *) table->stats, new_size ); 
     if ( table->stats == NULL ) 
       fatal_error( "Error #10:  reallocating table space!" ); 
     table->stats[ index ].symbol = (unsigned char) symbol; 
     table->stats[ index ].counts = 0; 
   } 
/* 
* Now I move the symbol to the front of its list. 
*/ 
 
     i = index; 
     while ( i > 0 && 
       table->stats[ index ]. counts == table->stats[ i-1 ].counts ) 
       i--; 
     if ( i != index ) { 
       temp = table->stats[ index ].symbol; 
       table->stats[ index ].symbol = table->stats[ i ].symbol; 
       table->stats[ i ].symbol = temp; 
       if ( table->links != NULL ) { 
         temp_ptr = table->links[ index ].next; 
         table->links[ index ].next = table->links[ i ].next; 
         table->links[ i ].next = temp_ptr; 
       } 
       index = 1; 
  } 
/* 
* The switch has been performed, now I can update the counts 
*/ 
  table->stats[ index ].counts++; 
  if ( table->stats[ index ].counts == 255 ) 
    rescale_table( table ); 
} 
/* 



* This routine is called when a given symbol needs to be encoded. 
* It is the job of this routine to find the symbol in the context 
* table associated with the current table, and return the low and 
* high counts associated with that symbol, as well as the scale. 
* Finding the table is simple.  Unfortunately, once I find the table, 
* I have to build the table of cumulative counts, which is 
* expensive, and is done elsewhere.  If the symbol is found in the 
* table, the appropriate counts are returned.  If the symbol is 
* not found, the ESCAPE symbol probabilities are returned, and 
* the current order is reduced.  Note also the kludge to support 
* the order -2 character set, which consists of negative numbers 
* instead of unsigned chars.  This insures that no match will ever 
* be found for the EOF or FLUSH symbols in  any "normal" table. 
*/ 
int convert_int_to_symbol( c, s ) 
int c; 
SYMBOL *s; 
{ 
     int i; 
     CONTEXT *table; 
 
     table = contexts[ current_order ]; 
     totalize_table( table ); 
     s->scale = totals[ 0 ]; 
     if ( current_order == –2 ) 
       c = -c; 
     for ( i = 0 ; i <= table->max_index ; i++ ) { 
       if ( c == (int) table->stats[ i ].symbol ) { 
         if ( table->stats[ i ].counts == 0 ) 
           break; 
         s->low_count = totals[ i+2 ]; 
         s->high_count = totals[ i+1 ]; 
         return( 0 ); 
       } 
     } 
     s->low_count = totals[ 1 ]; 
     s->high-count = totals[ 0 ]; 
     current_order––; 
     return( 1 ); 
} 
/* 
* This routine is called when decoding an arithmetic number.  In 
* order to decode the present symbol, the current scale in the 
* model must be determined.  This requires looking up the current 
* table, then building the totals table.  Once that is done, the 
* cumulative total table has the symbol scale at element 0. 
*/ 
 
void get_symbol_scale( s) 
SYMBOL *s; 
{ 
     CONTEXT *table; 
 
     table = contexts[ current_order ]; 
     totalize_table( table ); 
     s->scale = totals[ 0 ]; 
} 



/* 
* This routine is called during decoding.  It is given a count that 
* came out of the arithmetic decoder, and has to find the symbol that 
* matches the count.  The cumulative totals are already stored in the 
* totals[] table, from the call to get_symbol-scale, so this routine 
* just has to look through that table.  Once the match is found, 
* the appropriate character is returned to the caller.  Two possible 
* complications.  First, the character might be the ESCAPE character, 
* in which case the current_order has to be decremented.  The other 
* complication.  First, the character might be the ESCAPE character, 
* in which case the current_order has to be decremented.  The other 
* complication is that the order might be -2, in which case we return 
* the negative of the symbol so it isn't confused with a normal 
* symbol. 
*/ 
int convert_symbol_to_int( count, s ) 
int count; 
SYMBOL *s; 
{ 
     int c; 
     CONTEXT *table; 
 
     table - contexts[ current_order ]; 
     for ( c = 0; count < totals[ c ] ; c++ ) 
       ; 
     s->high_count = totals[ c - 1 ]; 
     s->low_count = totals[ c ]: 
     if ( c == 1 ) { 
       current_order––; 
       return( ESCAPE ); 
     } 
     if ( current_order < -1 ) 
       return( (int) -table->stats[ c-2 ].symbol ); 
     else 
       return( table->stats[ c-2 ].symbol ); 
} 
 
/* 
* After the model has been updated for a new character, this routine 
* is called to "shift" into the new context.  For example, if the 
* last context was "ABC", and the symbol 'D' had just been processed, 
* this routine would want to update the context pointers to that 
* context[1]=="D", contexts[2]=="CD" and contexts[3]=="BCD".  The 
* potential problem is that some of these tables may not exist. 
* The way this is handled is by the shift_to_next_context routine. 
* It is passed a pointer to the "ABC" context, along with the symbol 
* 'D', and its job is to return a pointer to "BCD".  Once we have 
* "BCD", we can follow the lesser context pointers in order to get 
* the pointers to "CD" and "C".  The hard work was done in 
* shift_to_context(). 
*/ 
 
void add_character_to_model( c ) 
int c; 
{ 
 
     int i; 



     if ( max_order < 0 || c < 0 ) 
       return; 
     contexts[ max_order ] = 
       shift_to_next_context( contexts[ max_order ], c, max_order ); 
     for ( i = max_order-1 ; i > 0 ; i–– ) 
       contexts[ i ] = contexts[ i+1 ]->lesser_context; 
} 
 
/* 
* This routine is called when adding a new character to the model.  
From 
* the previous example, if the current context was "ABC", and the new 
* symbol was 'D', this routine would get called with a pointer to 
* context table "ABC", and symbol 'D', with order max_order.  What this 
* routine needs to do then is to find the context table "BCD".  This 
* should be an easy job, and it is if the table already exists.  All 
* we have to in that case is follow the back pointer from "ABC" to "BC". 
* We then search the link table of "BC" until we find the link to "D". 
* That link points to "BCD", and that value is then returned to the 
* caller.  The problem crops up when "BC" doesn't have a pointer to 
* "BCD".  This generally means that the "BCD" context has not appeared 
* yet.  When this happens, it means a new table has to be created and 
* added to the "BC" table.  That can be done with a single call to 
* the allocate_new_table routine.  The only problem is that the 
* allocate_new_table routine wants to know what the lesser context for 
* the new table is going to be.  In other words, when I create "BCD", 
* I need to know where "CD" is located.  In order to find "CD", I 
* have to recursively call shift_to_next_context, passing it a pointer 
* to context "C" and the symbol 'D'.  It then returns a pointer to 
* "CD", which I use to create the "BCD" table.  The recursion is 
* guaranteed to end if it ever gets to order -1, because the null table 
* is guaranteed to have a link for every symbol to the order 0 table. 
* This is the most complicated part of the modeling program, but it is 
* necessary for performance reasons. 
*/ 
CONTEXT *shift_to_next_context( table, c, order ) 
CONTEXT *table; 
int c; 
int order; 
{ 
 
     int i; 
     CONTEXT *new_lesser; 
/* 
* First, try to find the new context by backing up to the lesser 
* context and searching its link table.  If I find the link, we take 
* a quick and easy exit, returning the link.  Note that there is a 
* special kludge for context order 0.  We know for a fact that 
* the lesser context pointer at order 0 points to the null table, 
* order -1, and we know that the -1 table only has a single link 
* pointer, which points back to the order 0 table. 
*/ 
     table = table->lesser_context; 
     if ( order == 0 ) 
       return( table->links[ 0 ].next ); 
     for ( i = 0 ; i <= table->max_index ; i++ ) 
       if ( table->stats[ i ].symbol == (unsigned char) c ) 



         if ( table->links[ i ].next != NULL) 
           return( table->links[ i ].next ); 
         else 
           break; 
/* 
* If I get here, it means the new context did not exist.  I have to 
* create the new context, add a link to it here, and add the backwards 
* link to *his* previous context.  Creating the table and adding it to 
* this table is pretty easy, but adding the back pointer isn't.  Since 
* creating the new back pointer isn't easy, I duck my responsibility 
* and recurse to myself in order to pick it up. 
*/ 
  new_lesser = shift_to_next_context( table, c, order-1 ); 
/* 
* Now that I have the back pointer for this table, I can make a call 
* to a utility to allocate the new table. 
*/ 
  table = allocate_next_order_table( table, c, new_lesser ); 
  return( table ); 
} 
 
/* 
* Rescaling the table needs to be done for one of three reasons. 
* First, if the maximum count for the table has exceeded 16383, it 
* means that arithmetic coding using 16 and 32 bit registers might 
* no longer work.  Secondly, if an individual symbol count has 
* reached 255, it will no longer fit in a byte.  Third, if the 
* current model isn't compressing well, the compressor program may 
* want to rescale all tables in order to give more weight to newer 
* statistics.  All this routine does is divide each count by 2. 
* If any counts drop to 0, the counters can be removed from the 
* stats table, but only if this is a leaf context.  Otherwise, we 
* might cut a link to a higher order table. 
*/ 
void rescale_table( table ) 
CONTEXT *table; 
{ 
     int i; 
 
     if ( table->max_index == -1 ) 
       return; 
     for ( i = 0 ; i <= table->max_index ; i ++ ) 
       table->stats[ i ].counts /= 2; 
     if ( table->stats[ table]>max_index ].counts == 0 && 
         table->links == NULL ) { 
         while ( table->stats[ table->max_index ].counts == 0 && 
              table->max_index >= 0 ) 
           table->max_index––; 
         if ( table->max_index == -1 ) { 
           free( (char *) table->stats ); 
           table->stats = NULL; 
         } else { 
           table->stats = (STATS *) 
             realloc( (char *) table->stats, 
                     sizeof( STATS ) * ( table->max_index + 1 ) ); 
           if ( table->stats == NULL ) 
             fatal_error( "Error #11: reallocating stats space!" ); 



     } 
   } 
} 
/* 
* This routine has the job of creating a cumulative totals table for 
* a given context.  The cumulative low and high for symbol c are going 
to 
* be stored in totals[c+2] and totals[c+1].  Locations 0 and 1 are 
* reserved for the special ESCAPE symbol.  The ESCAPE symbol 
* count is calculated dynamically, and changes based on what the 
* current context looks like.  Note also that this routine ignores 
* any counts for symbols that have already shown up in the scoreboard, 
* and it adds all new symbols found here to the scoreboard.  This 
* allows us to exclude counts of symbols that have already appeared in 
*  higher order contexts, improving compression quite a bit. 
*/ 
 
void totalize_table( table ) 
CONTEXT *table; 
{ 
 
     int i; 
     unsigned char max; 
 
     for ( ; ; ) { 
       max = 0; 
       i = table->max_index + 2; 
       totals[ i ] = 0; 
       for ( ; i > 1 ; i- ) { 
         totals[ i-1 ] = totals[ i ]; 
         if ( table->stats[ i-2 ].counts ) 
           if ( ( current_order == -2 ) || 
             scoreboard[ table->stats[ i-2 ].symbol ] == 0 ) 
             totals[ i-1 ] += table->stats[ i-2].counts; 
         if ( table->stats[ i-2 ].counts > max ) 
           max = table->stats[ i-2 ].counts; 
       } 
/* 
* Here is where the escape calculation needs to take place. 
*/ 
 
     if ( max == 0 ) 
       totals[ 0 ] = 1; 
     else { 
       totals[ 0 ] = (short int) ( 256 - table->max_index ); 
       totals[ 0 ] *= table->max_index; 
       totals[ 0 ] /= 256; 
       totals[ 0 ] /= max; 
       totals[ 0 ]++; 
       totals[ 0 ] += totals[ 1 ]; 
     } 
     if ( totals[ 0 ] < MAXIMUM_SCALE ) 
       break; 
     rescale_table( table ); 
     } 
     for ( i = 0 ; i < table->max_index ; i++ ) 
       if (table->stats[i].counts != 0) 



         scoreboard[ table->stats[ i ].symbol ] = 1; 
} 
 
/* 
* This routine is called when the entire model is to be flushed. 
* This is done in an attempt to improve the compression ratio by 
* giving greater weight to upcoming statistics.  This routine 
* starts at the given table, and recursively calls itself to 
* rescale every table in its list of links.  The table itself 
* is then rescaled. 
*/ 
 
void recursive_flush( table ) 
CONTEXT *table; 
{ 
     int i; 
     if ( table->links != NULL ) 
       for ( i = 0 ; i <= table->max_index ; i++ ) 
         if ( table->links[ i ].next != NULL ) 
           recursive_flush( table->links[ i ].next ); 
     rescale_table( table ); 
} 
 
/* 
* This routine is called to flush the whole table, which it does 
* by calling the recursive flush routine starting at the order 0 
* table. 
*/ 
 
void flush_model() 
{ 
  putc( 'F', stdout ); 
  recursive_flush( contexts[ 0 ] ); 
} 
 
/* 
* Everything from here down define the arithmetic coder section 
* of the program. 
*/ 
 
*/ 
* These four variables define the current state of the arithmetic 
* coder/decoder.  They are assumed to be 16 bits long.  Note that 
* by declaring them as short ints, they will actually be 16 bits 
* on most 80X86 and 680X0 machines, as well as VAXen. 
*/ 
static unsigned short int code;/* The present input code value      */ 
static unsigned short int low; /* Start of the current code range   */ 
static unsigned short int high;/* End of the current code range     */ 
long underflow_bits;           /* Number of underflow bits pending   
*/ 
/* 
* This routine must be called to initialize the encoding process. 
* The high register is initialized to all 1s, and it is assumed that 
* it has an infinite string of 1s to be shifted into the lower bit 
* positions when needed. 
*/ 



 
void initialize_arithmetic_encoder() 
{ 
     low = 0; 
     high = 0xffff; 
     underflow_bits = 0; 
} 
 
/* 
* At the end of the encoding process, there are still significant 
* bits left in the high and low registers.  We output two bits, 
* plus as many underflow bits as are necessary. 
*/ 
void flush_arithmetic_encoder( stream ) 
BIT_FILE *stream; 
{ 
      OutputBit( stream, low & 0x4000 ); 
      underflow_bits++; 
      while ( underflow_bits-- > 0 ) 
        OutputBit( stream, ~low & 0X4000 ); 
      OutputBits( stream, 0L, 16 ); 
} 
 
/* 
* This routine is called to encode a symbol.  The symbol is passed 
* in the SYMBOL structure as a low count, a high count, and a range, 
* instead of the more conventional probability ranges.  The encoding 
* process takes two steps.  First, the values of high and low are 
* updated to take into account the range restriction created by the 
* new symbol.  Then, as many bits as possible are shifted out to 
* the output stream.  Finally, high and low are stable again and 
* the routine returns. 
*/ 
 
void encode_symbol( stream, s ) 
BIT_FILE *stream; 
SYMBOL *s; 
{ 
  long range; 
 
/* 
*  These three lines rescale high and low for the new symbol. 
*/ 
 
     range = (long) ( high-low ) + 1; 
     high = low + (unsigned short int) 
                  (( range * s->high_count ) / s->scale -1 ); 
     low = low + (unsigned short int) 
                  (( range * s->low_count ) / s->scale ); 
 
/* 
* This loop turns out new bits until high and low are far enough 
* apart to have stabilized. 
*/ 
 
  for ( ; ; ) { 
 



/* 
* If this test passes, it means that the MSDigits match, and can 
* be sent to the output stream. 
*/ 
 
     if ( ( high & 0x8000 ) == ( low & 0x8000 ) ) { 
       OutputBit( stream, high & 0x8000 ); 
       while ( underflow_bits > 0 ) { 
         OutputBit( stream, ~high & 0x8000 ); 
         underflow_bits--; 
       } 
     } 
 
/* 
* If this test passes, the numbers are in danger of underflow, because 
* the MSDigits don't match, and the 2nd digits are just one apart. 
*/ 
 
     else if ( ( low & 0x4000 ) && !( high & 0x4000 )) { 
       underflow_bits += 1; 
       low &= 0x3fff; 
       high |= 0x4000; 
     } else 
       return ; 
     low <<= 1; 
     high <<= 1; 
     high  |= 1; 
 
   } 
} 
/* 
* When decoding, this routine is called to figure out which symbol 
* is presently waiting to be decoded.  This routine expects to get 
* the current model scale in the s->scale parameter, and it returns 
* a count that corresponds to the present floating point code; 
* 
* code = count / s->scale 
*/ 
short int get_current_count( s ) 
SYMBOL *s; 
{ 
     long range; 
     short int count; 
 
     range = (long) ( high - low ) + 1; 
     count = (short int) 
          ((((long) ( code - low ) + 1 ) * s->scale-1 ) / range ); 
     return( count ); 
} 
/* 
* This routine is called to initialize the state of the arithmetic 
* decoder.  This involves initializing the high and low registers 
* to their conventional starting values, plus reading the first 
* 16 bits from the input stream into the code value. 
*/ 
void initialize_arithmetic_decoder( stream ) 
BIT_FILE *stream; 



{ 
     int i; 
 
     code = 0; 
     for ( i = 0 ; i < 16 ; i++ ) { 
        code <<= 1; 
        code += InputBit( stream ); 
     } 
     low = 0; 
     high = 0xffff; 
} 
 
/* 
* Just figuring out what the present symbol is doesn't remove 
* it from the input bit stream.  After the character has been 
* decoded, this routine has to be called to remove it from the 
* input stream. 
*/ 
void remove_symbol_from_stream( stream, s ) 
BIT_FILE *stream; 
SYMBOL *s; 
{ 
  long range; 
 
/* 
* First, the range is expanded to account for the symbol removal. 
*/ 
 
     range = (long)( high - low ) + 1; 
     high = low + (unsigned short int) 
                  (( range * s->high_count ) / s->scale -1 ); 
     low = low + (unsigned short int) 
                  (( range * s->low_count ) / s->scale ); 
 
/* 
* Next, any possible bits are shipped out. 
*/ 
 
     for ( ; ; ) { 
 
/* 
* If the MSDigits match, the bits will be shifted out. 
*/ 
 
     if ( ( high & 0x8000 ) == ( low & 0x8000 ) ) { 
     } 
 
/* 
* Else, if underflow is threatening, shift out the 2nd MSDigit. 
*/ 
 
     else if ((low & 0x4000) == 0x4000  && (high & 0x4000) == 0 ) { 
       code ^= 0x4000; 
       low &= 0x3fff; 
       high |= 0x4000; 
     } else 
 



/* 
* Otherwise, nothing can be shifted out, so I return. 
*/ 
 
        return; 
     low <<= 1; 
     high <<= 1; 
     high |= 1; 
     code <<= 1; 
     code += InputBit( stream ); 
   } 
} 
/************************** End of ARITH-N.C *************************/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 7 
Dictionary-Based Compression  
So far, the compression methods we have looked at used a statistical model to encode 
single symbols. They achieve compression by encoding symbols into bit strings that use 
fewer bits than the original symbols. The quality of the compression goes up or down 
depending on how good the program is at developing a model. The model not only has to 
accurately predict the probabilities of symbols, it also has to predict probabilities that 
deviate from the mean. More deviation achieves better compression.  

But dictionary-based compression algorithms use a completely different method to 
compress data. This family of algorithms does not encode single symbols as variable-
length bit strings; it encodes variable-length strings of symbols as single tokens. The 
tokens form an index to a phrase dictionary. If the tokens are smaller than the phrases 
they replace, compression occurs. 

In many respects, dictionary-based compression is easier for people to understand. It 
represents a strategy that programmers are familiar with—using indexes into databases to 
retrieve large amounts of storage. In everyday life, we use phone numbers, Dewey 
Decimal numbers, and postal codes to encode larger strings of text. This is essentially 
what a dictionary-based encoder does. 

An Example 

A good example of how dictionary based compression works can be created by using a 
standard dictionary. For this example, I will use the Random House Dictionary of the 
English Language, Second Edition, Unabridged. Using this dictionary’s system as a key 
for encoding messages, I can achieve a reasonable amount of compression. Using my 
proprietary scheme, the first eight words of the first sentence in this paragraph would 
read:  

1/1 822/3 674/4 1343/60 928/75 550/32 173/46 421/2 

This dictionary-based encoding scheme consists of a simple lookup table. The first 
number gives the page of the dictionary, and the second number tells the number of the 
word on that page. The dictionary has 2,200 pages with less than 256 entries on each 
page. Thus, 1/1 encodes the first word on the first page, which is “A.” 822/3 encodes the 
third word on the 822nd page, which is “good.”  

To see how much space this scheme would save, look at the number of bits actually used 
to encode a word. Since a word can land on any of 2,200 pages, we need 12 bits to 
encode the page number. Each page has fewer than 256 entries, so the number of the 
entry will take just 8 bits to encode. This gives a total of 20 bits to encode any word in 
the dictionary, or 2.5 bytes per word. 



The ASCII representation of the eight words in our encoded message takes 43 bytes. The 
encoded message takes 2.5 × 8 bytes, or 20 bytes. Thus, we compressed our text to 50 
percent of its original size using dictionary encoding. 

In theory, a different encoding method can probably improve on this. The dictionary has 
about 315,000 words. Shannon’s formula for information content tells us that any one of 
the words in the dictionary can be encoded using just a little over eighteen bits. We used 
the page number/entry number scheme to make it easier to look up the encoded word, a 
general theme in dictionary-based compression. 

Static vs. Adaptive 

In general, dictionary-based compression replaces phrases with tokens. If the number of 
bits in the token is less than the number of bits in the phrase, compression will occur. But 
this definition of dictionary-based compression still leaves enormous room for variation. 
Consider, for example, the methods for building and maintaining a dictionary.  

In some cases, it is advantageous to use a predefined dictionary to encode text. If the text 
to be encoded is a database containing all motor-vehicle registrations for Texas, we could 
develop a dictionary with only a few thousand entries that concentrated on words like 
“General Motors,” “Smith,” “Main,” and “1977.” Once this dictionary were compiled, it 
could be kept on-line and used by both the encoder and decoder as needed. 

A dictionary like this is called a static dictionary. It is built up before compression occurs, 
and it does not change while the data is being compressed. It has advantages and 
disadvantages. One of the biggest advantages is that a static dictionary can be “tuned” to 
fit the data it is compressing. With the motor-vehicle registration database, for example, 
Huffman encoding could allocate fewer bits to strings such as “Ford” and more bits to 
“Yugo.” Of course, we could use different bit strings depending on which field is being 
compressed. 

Adaptive compression schemes can’t tune their dictionaries in advance, which in 
principle would seem a major disadvantage. But static dictionary schemes have to deal 
with the problem of how to pass the dictionary from the encoder to the decoder. Chapters 
3 and 5 showed that passing statistics along with compressed data can significantly harm 
compression, particularly on small files. 

But this doesn’t have to be a disadvantage in every case. In many situations, a static 
dictionary could remain the same over long periods of time and be kept on line, available 
to both the compressor and the decompressor. The motor-vehicle database dictionary 
could be calculated once, for example, then kept on hand. In the case of an exceptionally 
large amount of data, the compression ratio may not be significantly degraded if the 
dictionary is passed with the compressed text. 



Adaptive Methods 

At present, dictionary-based compression schemes using static dictionaries are mostly ad 
hoc, implementation dependent, and not general purpose. Most well-known dictionary 
algorithms are adaptive. Instead of having a completely defined dictionary when 
compression begins, adaptive schemes start out either with no dictionary or with a default 
baseline dictionary. As compression proceeds, the algorithms add new phrases to be used 
later as encoded tokens.  

The basic principle behind adaptive dictionary programs is relatively easy to follow. 
Imagine a section of code that compressed text using an algorithm that looked something 
like this: 

for ( ; ; ) { 
  word = read_word( input_file ); 
  dictionary_index = look_up( word, dictionary ); 
  if ( dictionary_index < 0 ) { 
    output( word, output_file ); 
    add_to_dictionary( word, dictionary ); 
  } else 
    output( dictionary_index, output_file ); 
} 

If the dictionary index used here could be encoded as an integer index into a table, we 
would achieve respectable compression with what is actually a very simple algorithm. 
This code is a specialized one set up to apply to written documents, but the principle 
behind it is similar to that behind many more sophisticated algorithms. It illustrates the 
basic components of an adaptive dictionary compression algorithm;  

1.  To parse the input text stream into fragments tested against the dictionary.  
2.  To test the input fragments against the dictionary; it may or may not be 
desirable to report on partial matches.  
3.  To add new phrases to the dictionary.  
4.  To encode dictionary indices and plain text so that they are distinguishable.  

The corresponding decompression program has a slightly different set of requirements. It 
no longer has to parse the input text stream into fragments, and it doesn’t have to test 
fragments against the dictionary. Instead, it has the following requirements: (1) to decode 
the input stream into either dictionary indices or plain text; (2) to add new phrases to the 
dictionary; (3) to convert dictionary indices into phrases; and (4) to output phrases as 
plain text. The ability to accomplish these tasks with relatively low costs in system 
resources made dictionary-based programs popular over the last ten years.  

A Representative Example 

Compressing data when sending it to magnetic tape has several nice side effects. First, it 
reduces the use of magnetic tape. Though magnetic tape is not particulary expensive, 
some applications make prodigous use of it. Second, the effective transfer rate to and 



from the tape is increased. Improvements in transfer speed through hardware are 
generally expensive, but compression through software is in a sense “free.” Finally, in 
some cases, the overall CPU time involved may actually be reduced. If the CPU cost of 
writing a byte to magnetic tape is sufficiently high, writing half as many compressed 
bytes may save enough cycles to pay for the compression.  

While the benefits of compressing data before sending it to magnetic tape have been clear, 
only sporadic methods were used until the late 1980s. In 1989, however, Stac Electronics 
successfully implemented a dictionary-based compression algorithm on a chip. This 
algorithm was quickly embraced as an industry standard and is now widely used by tape-
drive manufacturers worldwide. 

This compression method is generally referred to by the standard which defines it: QIC-
122. (QIC refers to the Quarter Inch Cartridge industry group, a trade association of tape-
drive manufacturers.) As you may know, Stac Electronics expanded the scope of this 
algorithm beyond tape drives to the consumer hard disk utility market in the form of its 
successful Stacker program (discused later in this chapter). 

QIC-122 provides a good example of how a sliding-window, dictionary-based 
compression algorithm actually works. It is based on the LZ77 sliding-window concept. 
As symbols are read in by the encoder, they are added to the end of a 2K window that 
forms the phrase dictionary. To encode a symbol, the encoder checks to see if it is part of 
a phrase already in the dictionary. If it is, it creates a token that defines the location of the 
phrase and its length. If it is not, the symbol is passed through unencoded. 

The output of a QIC-122 encoder consists of a stream of data, which, in turn, consists of 
tokens and symbols freely intermixed. Each token or symbol is prefixed by a single bit 
flag that indicates whether the following data is a dictionary reference or a plain symbol. 
The definitions for these two sequences are: (1) plaintext: <1><eight-bit-symbol>; (2) 
dictionary reference: <0><window-offset><phrase-length>.  

The QIC-122 encoder complicates things by further encoding the window-offset and 
phrase-length codes. Window offsets of less than 128 bytes are encoded in seven bits. 
Offsets between 128 bytes and 2,047 bytes are encoded in eleven bits. The phrase length 
uses a variable-bit coding scheme which favors short phrases over long. This explanation 
will gloss over these as “implementation details.” The glossed-over version of the C code 
for this algorithm is shown here. 

while ( !out_of_symbols ) { 
  length = find_longest_match(&offset); 
  if ( length > 1 ) { 
    output_bit( 0 ); 
    length = find_longest_match( &offset ); 
    output_bits( offset ); 
    output_bits( length ); 
    shift_input_buffer( length ); 
  } else { 
    output_bit( 1 ); 



    output_byte( buffer[ 0 ] ); 
    shift_input_buffer( 1 ); 
  } 
} 

Following is an example of what this sliding window looks like when used to encode 
some C code, in this case the phrase “output_byte.” The previously encoded text, which 
ends with the phrase “output_bit( 1 );\r,” is at the end of the window. The 
find_longest_match routine will return a value of 8, since the first eight characters of 
“output_byte” match the first eight characters of “output_bit.” The encoder will then 
output a 0 bit to indicate that a dictionary reference is following. Next it will output a 15 
to indicate that the start of the phrase is fifteen characters back into the window (‘\r’ is a 
single symbol). Finally, it will output an 8 to indicate that there are eight matching 
symbols from the phrase.  

 
Figure 7.1  A sliding window used to encode some C code. 

Using QIC-122 encoding, this will take exactly sixteen bits to encode, which means it 
encodes 8 bytes of data with only 2 bytes. This is clearly a respectable compression ratio, 
typical of how QIC-122 works under the best circumstances as shown here:  

 
Figure 7.2  Encoding 8 bytes of data using only 2 bytes. 

After the dictionary reference is output, the input stream over eight characters, with the 
last symbol encoded becoming the last symbol in the window. The next three symbols 
will not match anything in the window, so they will have to be individually encoded.  

This example of QIC-122 gives a brief look at how a dictionary-based compression 
scheme might work. Chapter 8 will take a more extensive look at LZ77 and its 
derivatives. 

Israeli Roots 

Dig beneath the surface of virtually any dictionary-based compression program, and you 
will find the work of Jacob Ziv and Abraham Lempel. For all practical purposes, these 
two Israeli researchers gave birth to this branch of information theory in the late 1970s.  

Research in data compression up to 1977 included work on entropy, character and word 
frequencies, and various other facets of statistical modeling. There were minor forays into 
other esoteric areas of interest, such as finite state machines and linguistic models, but 
research went mainly into new and improved methodologies for driving Huffman coders. 

All this changed in 1977 with the publication of Jacob Ziv’s and Abraham Lempel’s “A 
Universal Algorithm for Sequential Data Compression” in IEEE Transactions on 
Information Theory. This paper, with its 1978 sequel “Compression of Individual 



Sequences via Variable-Rate Coding,” triggered a flood of dictionary-based compression 
research, algorithms, and programs. 

The two compression techniques developed in these papers are called LZ77 and LZ78 
(the transposition of the author’s initials is apparently an innocent historical accident, but 
one that is here to stay). LZ77 is a “sliding window” technique in which the dictionary 
consists of a set of fixed-length phrases found in a “window” into the previously 
processed text. The size of the window is generally somewhere between 2K and 16K 
bytes, with the maximum phrase length ranging from perhaps 16 to 64 bytes. LZ78 takes 
a completely different approach to building a dictionary. Instead of using fixed-length 
phrases from a window into the text, LZ78 builds phrases up one symbol at a time, 
adding a new symbol to an existing phrase when a match occurs. 

It is easy to think that these two compression methods are closely related, particularly 
since people will casually speak of “Lempel Ziv Compression” as if it were just one thing. 
These are, however, two very different techniques. They have different implementation 
problems and solutions, different strengths and weaknesses. Since they have had such a 
large impact on the world of data compression, the next two chapters of this book will 
take a detailed look at an LZ77 and an LZ78 implementation. 

History 

While the publication of the two papers in 1977 and 1978 may have had an immediate 
impact in the world of information theory, it was some time before programmers noticed 
the effects. In fact, it took the publication of another paper in 1984 to really get things 
moving.  

The June 1984 issue of IEEE Computer had an article entitled “A Technique for High-
Performance Data Compression” by Terry Welch. Welch described work performed at 
Sperry Research Center (now part of Unisys). His paper was a practical description of 
this implementation of the LZ78 algorithm, which he called LZW. It discussed the LZW 
compression algorithm in reference to its possible use in disk and tape-drive controllers, 
but it was clear that the same algorithm could easily be built into a general-purpose 
compression program. 

Almost immediately after the article appeared, work began on the Unix compress 
program. compress is a C program developed initially on the DEC’s VAX. Ports to other 
machines, including the IBM PC, followed shortly. The public release of compress 
became available almost exactly a year after the publication of the IEEE article. 

Compress was a very influential program for a number of reasons. The program was well 
written. It performed well, and it had a reasonable level of documentation. Many UNIX 
installations began actively using compress soon after its release. Manual pages 
distributed with UNIX systems are now routinely shipped in compressed form, and they 
are not decompressed until accessed for the first time by the man program. The code was 
in the public domain from its initial release, which made for wide distribution and study. 



Perhaps most importantly, the authors went out of their way to ensure that the code was 
portable so that it could be used on a wide variety of systems with no modifications. 

While compress was becoming a standard in the UNIX community, desktop software was 
still struggling along with a rather inefficient order-0 Huffman coding program known as 
SQ. But in 1985, desktop power was increasing; more and more people were using 
modems to communicate; and hard-disk space was still relatively expensive. Conditions 
were ripe for an improvement in compression, and dictionary-based coding stepped in. 

ARC: The Father of MS-DOS Dictionary Compression 

In 1985, System Enhancement Associates released a general-purpose compression and 
cataloging program called ARC. ARC quickly took the MS-DOS desktop world by storm, 
becoming a de facto standard for PC users in a matter of months. Several factors helped 
ARC gain this position. First, it ordinarily used a close derivative of compress to 
compress files. At the time, this provided state-of-the-art compression and was essentially 
without peer. Second, ARC provided a cataloging or archiving function as an integral 
part of the program. UNIX users were accustomed to using the “tar” program to combine 
groups of files into a single archive, but PC users did not have a similar function as part 
of their operating system. ARC added that capability, vital for transferring groups of files 
by modem or even floppy diskette. Finally, ARC was distributed as shareware, which 
helped saturate the user base in a short time.  

With compress reigning supreme in the UNIX world and ARC ruling the MS-DOS world, 
it seemed LZ78 would be the dominant compression method for years. Imitators such as 
PKWare’s PKARC only strengthened LZ78’s hold by providing performance 
improvements in both speed and compression ratios. But oddly enough, in recent years 
the field has taken a step back, if you consider moving from LZ78 to LZ77 a step 
backwards. 

ARC lost its dominance of the desktop world to new contenders, most notably PKZIP, by 
PKWare; but also LHarc, by Haruyasu Yoshizaki; and ARJ, by Robert Jung. These 
programs are built on an LZ77 algorithm which uses a dictionary based on a sliding 
window that moves through the text. LZ77 was not a practical algorithm to implement 
until refinements were made in the mid 1980s. Now LZ77 has a legitimate position 
alongside LZ78 as co-ruler of the general-purpose compression world. 

Most recently, a patent dispute between Unisys, which owns the patent for LZ78-derived 
algorithms (Terry Welch’s work), versus the rest of the computer industry, has resulted in 
a definite shift over to LZ77-derived algorithms. For example, the recently designed PNG 
format (discussed later in this book) is being promulgated as a replacement to 
Compuserve’s GIF format, in order to sidestep Unisys’ patent claims. 



Dictionary Compression: Where It Shows Up 

Dictionary-based compression has found more and more homes in the last ten years as 
both hardware and software improvements make it practical. We can subdivide 
applications for dictionary-based compression into two areas: general-purpose programs 
and hardware-specific code.  

As shown, dictionary-based coding took over desktop general-purpose compression. In 
the MS-DOS world, programs such as PKZIP, ARC, ARJ, and LHarc all use dictionary-
based algorithms to compress and archive files in a general-purpose manner. Most of 
these programs have ports to at least one or two other platforms, UNIX being the most 
popular. 

Dictionary-based compression is also used in some special-purpose desktop programs. 
Most backup programs, for example, use some form of compression to make their 
operation faster and more efficient. PC Backup, developed by Central Point Software 
developed (a company later acquired by symantic), uses a dictionary-based algorithm 
from Stac Electronics, the company that produces the Stacker disk compression utility 
and which initiated the QIC-122 compression standard. 

Compuserve Information Service developed a dictionary-based compression scheme used 
to encode bit-mapped graphical images. The GIF format uses an LZW variant to 
compress repeated sequences in screen images. Compression is clearly needed when 
using these type of images. Computer images take up lots of storage space. As video 
resolutions improve, the size of the saved images grows dramatically. Compuserve users 
also typically use modems to upload or download these images. When running on older 
2400 baud modems, compressing images becomes even more crucial. Even at 14400 bps 
and faster speeds, the exploding use of the World-Wide Web on the Internet means 
increased demand for speedy transfer of graphics, and increased reliance on the GIF 
format for non-photographic images. (Image-oriented formats will be discussed in later 
chapters.) 

Compressing files before transmitting them saves telecommunications bandwidth. But 
this requires compatible compression software on both ends. A more convenient method 
of conserving bandwidth’s to build data compression directly into the modem. Microcom 
Corp. originally developed this idea, which used Huffman coding to compress data before 
it was transmitted by its modems. Microcom’s compression algorithm, MNP-5, uses a 
dynamic Huffman coding scheme that performs well as a general-purpose compressor on 
most data streams. 

In recent years, the international telecommunications industry has widely ratified and 
adopted a new compression algorithm used by modem manufacturers: V.42bis, a 
dictionary-based compression scheme which offers better compression ratios than MNP-
5. With the adoption of an international standard, modem builders can now implement 
data compression in their modems and have confidence that they can communicate with 
modems from other manufacturers. 



As mentioned previously, tape drive manufacturers have adopted an industry-standard 
compression algorithm: QIC-122. QIC-122 is generally implemented on the tape drive 
itself or on the tape controller using a dedicated microcontroller or the Stac Electronics 
compression engine chip. Hewlett-Packard has proposed an alternative compression 
standard known as DCLZ. DCLZ uses an LZ78-type algorithm, which supposedly offers 
better compression performance than programs based on QIC-122. 

The hard disk has been an active battleground for dictionary-based compression. In 
recent years, the utility programs for archiving and compressing files have been 
supplemented by programs that work at the device-driver level to transparently compress 
data stored on disk. The most visible of these utilities is Stacker, from Stac Electronics. 
There are others, including Disk Doubler on the Macintosh platform. In version 6 of MS-
DOS, Microsoft added Stacker-like compression to its operating system, and then was 
forced to remove it after a well-publicized lawsuit between Microsoft and Stac 
Electronics. When operating at the device-driver level, these programs add a level of 
convenience to compression that is hard to beat. 

One of the primary difficulties with compressing data on the hard disk is that most of 
today’s dictionary schemes are adaptive. A general-purpose algorithm would be needed 
to operate on a disk drive or controller, making a static dictionary difficult to implement. 
Most adaptive algorithms do not perform very well until they have built up some 
statistical information, which may take several K of input data. 

Unfortunately, disk drives are used in a random-access mode, which means a program 
can begin reading data at any point in the file. If the file were compressed using a 
conventional adaptive method, we might have to go back to the start and begin reading 
there in order to properly decompress the file. This may not be much of a problem in a 16 
Kbyte text file, but imagine the performance problems in a 16-Mbyte database! 

At present, manufactures of software- and hardware-based disk compression drivers 
avoid these problems by compressing at the sector level. Since the device driver typically 
reads in a sector or more at a time, the adaptive algorithm will restart at the begining of 
each sector boundary. Even better, if the device driver controls the size of the sector, it 
can be set to a somewhat larger value than might normally be used, giving the adaptive 
algorithm a chance to improve its compression. 

With algorithms such as QIC-122, increasing the sector size past a certain point will not 
likely improve matters, since the dictionary is only composed of the previous 2K bytes of 
data. But more powerful compression algorithms that take advantage of older information 
will frequently want to increase the sector size. 

In practice, many users of disk-compression programs that work at the device-driver level 
find performance to be less of an issue than one might expect. This is due to the fact that, 
while compression/decompression does consume additional CPU cycles, this effort is 
compensated for by the reduced amount of data that needs to be transferred between 
memory and the hard disk. When a mechanical procedure (physically moving the hard 



disk arm across the platter) competes with an electronic one (decompressing data in a 
CPU cache), the electronic process usually wins out. 

Danger Ahead—Patents 

The fact that most work on dictionary-based compression has been done over the last ten 
or fifteen years has a potentially dangerous side effect. Until the early 1980s, it was 
generally not possible to patent software. But during the past ten years, increasingly large 
numbers of patents were awarded for what are clearly algorithms.  

One of the first data-compression patents was granted to Sperry Corp. (now Unisys) for 
the improvements to LZ78 developed by Terry Welch at the Sperry Research Center. In 
fact, this patent became a point of contention during the standardization process for the 
V.42bis data-communications standard. Since V.42bis is based on the LZW algorithm, 
Unisys claimed the right to collect royalties on implementations which use V.42bis. 
There was some concern in the CCITT about the effect of basing a standard on a patented 
technique. Unisys dampened concern while protecting its patent rights by publicly 
offering to license the algorithm to any modem manufacturer for a onetime $25,000 fee. 

After a hiatus of several years, Unisys recently woke from slumber and began patent-
related legal maneuvers, seeking to get licensing fees from CompuServe and other users 
of the popular GIF format. Some in the industry viewed this request as unreasonable, 
given the lengthy delay between the introduction of the GIF format, and the unexpected 
demands for licensing fees once the format had gained wide acceptance. The response to 
Unisys’ effort was creative rather than contentious. Developers came together and in 
short order produced the PNG effort, a license-free format that contains many 
improvements over the existing GIF format. 

As research in dictionary-based compression continues, patents are being filed at a 
relatively rapid pace. Since patent filings are not a matter of public record, it is not 
possible to know if and when certain techniques will be freely available. At present, the 
most prudent course for potential data-compression users would be to conduct a patent 
search and to contact the inventors of any techniques they intend to use. 

Fortunately, manufacturers can generally come to terms on patent royalties for relatively 
modest terms. The danger comes when the owner of the patent is competing for the same 
market as a potential licensee. Unisys was only too happy to license the LZW algorithm 
to modem manufacturers, but it may have adopted an entirely different strategy in the 
online market—that of benign neglect followed by hasty demands. 

In recent years, the US Patent Office has come under severe criticism from some sectors 
in the industry by granting patents that some consider inappropriate or undeserved. The 
most visible instance was the patent granted to Compton’s for simple and widely-used 
techniques found in its multimedia encyclopedia product. This patent was later 
invalidated by the Patent Office, after much debate and criticism. Another well-



publicized case was the lawsuit between Microsoft and Stac Electronics, which revolved 
around a number of issues, including certain patents on data compression. 

Regarding the general subject of software patents, the computer industry has been split 
along at least two points of view. One view holds that patents are inappropriate in a 
dynamic and innovative field such as software, in which a computer program is built 
using dozens if not hundreds of techniques, algorithms, and data structures (as opposed to 
a physical/mechanical device or product, whose design centers around a much smaller 
array of techniques). In the case of software, patents can stifle innovation and economic 
growth that benefits us all. Large, well-established companies in the industry that 
generally adhere to this view include Adobe and Oracle, in addition to smaller non-profit 
organizations such as the League for Programming Freedom (see “Afterword” at the end 
of this book). 

Another point of view is that the patent process, while in some instances flawed and in 
need of overhaul, is basically well-conceived and should be preserved. Companies like 
IBM and Apple seem to adhere to this view. Regardless of their view, today most 
companies have stepped up their patent-related efforts, either as an aggressive business 
strategy or a precautionary self-defensive maneuver. Microsoft, for example, historically 
indifferent to the patent process, has bulked up for future skirmishes by hiring a phalanx 
of intellectual-property lawyers. 

After a series of public hearings on the matter of software patents, the US Patent Office, 
under Commissioner Bruce Lehman, has made improvements, added resources, and 
modified its instructions to patent examiners so that software patents are more easily 
granted. Whether these changes will have a positive effect on the computer industry 
remains to be seen. The only certainty is that patents will continue to play a central role in 
the field of data compression. 

Conclusion 

Dictionary-based compression techniques are presently the most popular forms of 
compression in the lossless arena. Almost without exception, these techniques can trace 
their origins back to the original work published by Ziv and Lempel in 1977 and 1978. 
Refinements on these algorithms yield better performance at lower cost, but both types of 
improvements are evolutionary, not revolutionary.  

 
 
 
 
 
 
 
 
 



Chapter 8 
Sliding Window Compression  
The genesis of modern dictionary-based compression can be traced to the 1977 Ziv and 
Lempel paper, “ A Universal Algorithm for Sequential Data Compression,” published in 
IEEE Transactions on Information Theory. In retrospect, this algorithm (referred to 
hereafter as LZ77) does not seem particularly remarkable. It is simple enough that it 
could have easily been described thirty or forty years earlier, and there is no doubt that it 
could have been implemented at least as a “proof of principle” program well before 1977. 

However, as was discussed in the previous chapter, till the late 1970s most data 
compression work concentrated on improved ways to drive Huffman coders and perhaps 
on more exotic studies of digrams or other statistical topics. So the LZ77 paper truly 
broke new ground. 

The Algorithm 

LZ77 compression uses previously seen text as a dictionary. It replaces variable-length 
phrases in the input text with fixed-size pointers into the dictionary to achieve 
compression. The amount of compression depends on how long the dictionary phrases 
are, how large the window into previously seen text is, and the entropy of the source text 
with respect to the LZ77 model.  

The main data structure in LZ77 is a text window, divided into two parts. The first 
consists of a large block of recently decoded text. The second, normally much smaller, is 
a look-ahead buffer. The look-ahead buffer has characters read in from the input stream 
but not yet encoded. 

The normal size of the text window is several thousand characters. The look-ahead buffer 
is generally much smaller, maybe ten to one hundred characters. The algorithm tries to 
match the contents of the look-ahead buffer to a string in the dictionary. A simplistic 
example of a text window is shown in Figure 8.1. 

 
Figure 8.1  A text window in use. 

Figure 8.1 shows a snippet of C code being compressed. The text window has a total 
width of 64 characters, with 16 of those characters used by the look-ahead buffer. The 



LZ77 algorithm, as originally conceived, issued sequences of tokens. Each token consists 
of three different data items which defined a phrase of variable length in the current look-
ahead buffer. The three items in the token are: (1) an offset to a phrase in the text window; 
(2) the length of the phrase; and (3) the first symbol in the look-ahead buffer that follows 
the phrase.  

In the above example, the look-ahead buffer contains the phrase “<MAX;j++)\r.” By 
searching through the buffer, we find that “<MAX” is located at position 14 in the text 
window. It matches the look-ahead buffer for the first four symbols. The first symbol not 
present in the look-ahead buffer is the space character. So this token is encoded as: 14, 4, 
‘ ’. 

The compression program that implements the LZ77 algorithm first emits the token, then 
shifts the text window over by five characters, which is the width of the phrase just 
encoded. Five new symbols are then read into the look-ahead buffer, and the process 
repeats. 

 
Figure 8.2  The window after encoding 14, 4, ‘ ’ 

The next token issued by the compression algorithm would encode the phrase “;j+” as 
“40, 2,‘+’.” The syntax of this token allows for phrases that have no match of any length 
in the window. If the look-ahead buffer shown above had no match, for example, it could 
be encoded a single character at a time using a phrase length of zero: “0, 0, ‘;’.” This 
method is not efficient, but it ensures that the algorithm can encode any message.  

The code to implement this compression algorithm should be fairly simple. It merely has 
to look through the entire text window for the longest match, encode it, then shift. A 
brute force application of this algorithm might look something like this: 

int window_cmp( char *w, int i, int j, int length ) 
{ 
 int count = 0; 
 
 while ( length-- ) { 
  if ( w[ i++ ] == w[ j++ ] ) 
   count++; 
  else 
   return( count ); 
 } 
 return( count ); 
} 
 
    . 
    . 



    . 
 match_position = 0; 
 match_length = 0; 
 for ( i = 0 ; i < ( WINDOW_SIZE - LOOK_AHEAD_SIZE ); i++ ) { 
  length = window_cmp( window, i, LOOK_AHEAD, LOOK_AHEAD_SIZE ); 
  if ( length > match_length ) { 
   match_position = i; 
   match_length = length; 
  } 
 } 
 encode( match_position, match_length, 
         window[ LOOK_AHEAD+match_length ] ); 
 memmove( window, window+match_length+1, WINDOW_SIZE - match_length ); 
 for ( i = 0 ; i < match_length+1 ; i++ ) 
  window[ WINDOW_SIZE - match_length + i ] = getc( input ); 
   . 
   . 
   . 

The decompression algorithm for LZ77 is even simpler, since it doesn’t have to do 
comparisons. It reads in a token, outputs the indicated phrase, outputs the following 
character, shifts, and repeats. It maintains the window, but it does not work with string 
comparisons. A decompression program that used the output of the previous program 
might have a loop like this:  

decode( &match_position, &match_length, &character ); 
fwrite( window+match_position, 1, match_length, output ); 
putc( character, output ); 
for ( i = 0 ; i < match_length ; i++ ) 
window[ LOOK_AHEAD+i ] = window[ match_position+i ]; 
window[ LOOK_AHEAD+i ] = character; 
memmove( window, window+match_length+1, WINDOW_SIZE - match_length ); 

One interesting side effect of this decompression method is that it can use phrases that 
have not yet been encoded to encode existing phrases. In a file that had one hundred 
consecutive ‘A’ characters, for example, we would encode the first A as (0, 0, ‘A’). Our 
window would then look like that shown in Figure 8.3.  

 
Figure 8.3  Coding for one hundred consecutive A characters. 

We could then encode the next nine A characters as (38, 9, ‘A’). It may seem odd to use a 
nine-character phrase here. Though we can see the eight characters in the phrase 
presently in the look-ahead buffer, the decoder won’t be able to. When the decoder 
receives the (38, 9, ‘A’) token, its buffer will look like Figure 8.4.  



 
Figure 8.4  The buffer for the decoder when it receives the (38, 9, ‘A’) token. 

But by examining the decompression algorithm, you can see how the decompression 
routine manages this trick. It sits in a loop, copying from the match position to the look-
ahead buffer. After the first character has been copies, the buffer looks like Figure 8.5.  

 
Figure 8.5  What the buffer looks like after it copies the first character. 

The next time through the loop the second A character will be available to be copied 
though it was not in the window when the decoding started. After the entire copy is 
complete, along with the single character store, the buffer is ready to shift, as shown in 
Figure 8.6.  

 
Figure 8.6  The buffer, when ready to shift. 

This illustrates a powerful feature of LZ77 compression: rapid adaptation to the character 
of the input stream. In this example, it encoded a sequence of ten characters when its 
“dictionary” had only been loaded with a single character.  

Problems with LZ77 

The implementation of LZ77 shown here is deliberately crude. It also has to be 
considered a somewhat liberal interpretation of the algorithm. The authors presented little 
discussion of implementation details when they presented their method.  



There is clearly a major performance bottleneck in the LZ77 approach. When encoding, it 
has to perform string comparisons against the look-ahead buffer for every position in the 
text window. As it tries to improve compression performance by increasing the size of 
the window, and thus the dictionary, this performance bottleneck only gets worse. On the 
bright side, however, the decompression portion of this algorithm does not have to suffer 
through this bottleneck. Since it only copies the phrases, it can operate at a much higher 
rate. Even better, the LZ77 decompressor will not be severely affected by increases in 
either the size of the text window or the look-ahead buffer. 

A second performance problem occurs with the way the sliding window is managed. For 
conceptual convenience, the discussion here treated the sliding window as though it were 
truly sliding “across” the text, progressing from the end of the buffer to the front as the 
encoding process was executed. 

This may be conceptually superior, but it is certainly not the best way to code an LZ77 
program. In fact, it is much better to have a sliding index or pointer into a fixed buffer. 
Instead of moving the phrases toward the front of the window, a sliding pointer would 
keep the next in the same place in the window and move the start and end pointers along 
the buffer as text is encoded. 

Using sliding pointers does create a few problems. For one, we can’t use a 
straightforward string-compare function like strncmp() to look for longest phrases 
because a phrase may land across the end of the physical window, with the first character 
at window[ WINDOW_SIZE - 1 ] and the second at window[ 0 ]. This means that as we 
do string comparisons we need to use a modulo index into the window instead of a 
normal index. A recoded version of strncmp() that would work properly under these 
revised circumstances might look like this: 

int window_cmp( char *w, int i, int j, int length ) 
{ 
 int count = 0; 
 while ( length-- ) { 
  if ( w[ i ] == w[ j ] ) 
   count++; 
  else 
   return( count ); 
  i = ++i % WINDOW_SIZE; 
  j = ++j % WINDOW_SIZE; 
 } 
 return( count ); 
} 

This routine is slightly more complicated, but it will pay for itself in savings on calls to 
memmove(). Keeping the buffer in one place is a big savings in CPU cycles. In addition, 
the routine can be made even more efficient if WINDOW_SIZE is an integral power of 2. 
The modulus operator can then be replaced by a logical AND, saving even more time.  



An Encoding Problem 

Besides the CPU cost problems, the LZ77 algorithm has a major efficiency problem. 
When encoding phrases, LZ77 achieves good compression rapidly. Even if the phrases 
being substituted for input text are short, they will still generally cause very effective 
compression to take place.  

The problem occurs when matching phrases are not found in the dictionary. When this is 
the case, the compression program still has to use the same three component tokens to 
encode a single character. To realize the cost of this, imagine encoding a single character 
when using a 4,096-byte window and a sixteen-byte look-ahead buffer. This would take 
twelve bits to encode a window position and another four bits to encode a phrase length. 
Using this system, encoding the (0, 0, c) token would take twenty-four bits, all to encode 
a single eight-bit symbol. This is a very high price to pay, and there ought to be a way to 
improve it. 

LZSS Compression 

LZSS compression seeks to avoid some of the bottlenecks and performance problems in 
the original LZ77 algorithm. It makes two major changes to the way the algorithm works. 
The first is in the way the text window is maintained. Under LZ77, the phrases in the text 
window were stored as a single contiguous block of text, with no other organization on 
top of it. LZSS still stores text in contiguous windows, but it creates an additional data 
structure that improves on the organization of the phrases.  

As each phrase passes out of the look-ahead buffer and into the encoded portion of the 
text windows, LZSS adds the phrase to a tree structure. In the implementation that will be 
used in this chapter, the tree is a binary search tree. By sorting the phrases into a tree such 
as this, the time required to find the longest matching phrase in the tree will no longer be 
proportional to the product of the window size and the phrase length. Instead, it will be 
proportional to the base 2 logarithm of the window size multiplied by the phrase length. 

The savings created by using the tree not only makes the compression side of the 
algorithm much more efficient, it also encourages experimentation with longer window 
sizes. Doubling the size of the text window now might only cause a small increase in the 
compression time, whereas before it would have doubled it. 

The second change lies in the actual tokens output by the compression algorithm. Recall 
that LZ77 output tokens consisted of a phrase offset, a match length, and the character 
that followed the phrase. This meant that LZ77 was compelled to alternate pointers with 
plain characters, regardless of the nature of the input text. 

LZSS instead allows pointers and characters to be freely intermixed. When first starting 
up, for example, the compression algorithm may not find any phrase matches to output 
for the first dozen or so input symbols. Under the LZ77 system, the encoder would still 
have to output a dummy match position with a length of zero for every symbol it output. 



LZSS instead uses a single bit as a prefix to every output token to indicate whether it is 
an offset/length pair or a single symbol for output. When outputting several consecutive 
single characters, this method reduces the overhead from possibly several bytes per 
character down to a single byte per character. 

Once the data is well characterized, the compressor may efficiently match up pointers 
every time it loads new data into the look-ahead buffer. LZ77 had some inefficiency here 
as well, since every offset/length pair had to be accompanied by a single character. This 
is not as bad as the previous type of inefficiency, but it still reduces the compression ratio. 

Data Structures 

Two important data structures are used in the implementation of LZSS shown in this 
chapter. They are the text window, which contains the previously encoded text buffer, 
and the look-ahead buffer. The text buffer is a simple character buffer declared and used 
as might normally be expected in a C program:  

unsigned char window[ WINDOW_SIZE ]; 

As discussed previously, while the idea of a sliding window might imply that the text 
should “slide” through the window, this would actually be an inefficient way to 
implement it. Instead, the look-ahead buffer moves through the array and tracks its index 
as it goes along. This means that once a phrase is stored in the array, it stays there until it 
is overwritten after WINDOW_SIZE characters have been encoded.  

This method of working with the text window also means that all string operations, 
copies, etc. performed on the window have to be done using modulo WINDOW_SIZE 
arithmetic. Computing (i+1) mod WINDOW_SIZE is usually done most efficiently if 
WINDOW_SIZE is an integral power of 2, and this implementation of LZSS expects that 
to be the case. Having WINDOW_SIZE be an integral power of 2 also leads to the most 
efficient way of encoding the window indices, so this is almost always the method used 
in sliding-window data compression. 

The second data structure in this program is the binary tree used to store the phrases 
currently in the text window. The tree is defined by the tree structure shown here: 

struct { 
 int parent; 
 int smaller_child; 
 int larger_child; 
} tree[ WINDOW_SIZE + 1 ]; 

For every phrase in the window, a corresponding structure element defines the position 
that phrase occupies in the tree. Each phrase has a parent and up to two children. Since 
this is a binary tree, the two child nodes are defined as “smaller” and “larger” children. 
Every phrase that resides under the smaller_child node must be smaller than the phrase 
defined by the current node, and every phrase under the larger_ child node must be larger. 



The terms “larger” and “smaller” refer to where the phrases fall in the collating sequence 
used by the compression program. In this particular program, one phrase is “larger” or 
“smaller” in the same sense as that used by the standard library strcmp() function.  

The tree used in this program has a couple of unusual features that need to be explained. 
First, though only WINDOW_SIZE phrases are in the window, we have defined the tree 
to have WINDOW_SIZE + 1 elements. In the implementation used here, 
tree[ WINDOW_SIZE ] is the special node used to locate the tree’s root. This element 
doesn’t have a phrase of its own, as do all other nodes in the tree. It also doesn’t have 
smaller and greater children like the other nodes. Instead, it has the index of a 
larger_child only, and this index points to the root node of the tree. 

Pointing to the root node in this fashion saves processing time and simplifies the code. 
When working our way up through the tree during an insertion or deletion, therefore, we 
don’t have to check to see if a parent node points to the root or to another node. Instead, 
we can assume that a node’s parent node is always a valid tree element. When deleting 
node i from the tree, for example, you will typically have a section of code that looks 
something like this: tree[ tree[ i ].parent ].child = tree[ i ].child. Because the pointer to the 
root node is stored in the same tree, we don’t have to perform any special checks to see if 
i is the root node. Even if i is the root node, tree[ i ].parent still points to a valid node in 
the tree. 

The second unusual feature is the use of another node for special purposes. Like the other 
programs in this book, LZSS uses a special code to indicate when the end of the 
compressed data is reached. In this case, a window index of zero indicates an end-of-
stream condition. 

Since index 0 has a special purpose, it can never be used as a valid phrase. So the code to 
insert a new phrase into the tree automatically returns without even trying to insert the 
phrase at index 0. Since phrase 0 is not used, we can achieve even more code savings by 
using node 0 as the special UNUSED index. This becomes useful when writing code to 
maintain the tree. A typical operation performed when deleting node i from the tree, for 
example, is to reassign a new parent node to i’s children. Code to perform this might look 
like what follows. 

if ( tree[ i ].smaller_child != UNUSED ) 
 tree[ tree[ i ].smaller_child ].parent = tree[ i ].parent; 
if ( tree[ i ].larger_child != UNUSED ) 
 tree[ tree[ i ].larger_child ].parent = tree[ i ].parent; 

But if the UNUSED index actually points to a legitimate storage area, the test for validity 
can be bypassed, with the resulting code looking like the following:  

tree[ tree[ i ].smaller_child ].parent = tree[ i ].parent; 
tree[ tree[ i ].larger_child ].parent = tree[ i ].parent; 



If either of the children in this example are UNUSED, no harm is done—the parent node 
for tree[ 0 ] will merely be modified. Since tree [ 0 ] is never used for any tree navigation, 
no harm is done, and significant CPU time is saved during tree updates.  

A Balancing Act 

Saving phrases in a binary tree can simplify the search for the best match. But a binary 
tree can deteriorate when given data that is ordered in some fashion. In the worst case, a 
binary tree can turn into nothing more than a linked list. Imagine a file that had the string 
“ABCDEFGHIJKLMNOP” in it. Since the phrases in that string would have to be added 
to the tree in order, the structure in Figure 8.7 would evolve.  

 
Figure 8.7  The structure that would evolve from the sequence 
“ABCDEFGHIJKLMNOP.” 

This structure may have a pleasing pattern, but it is not well built for locating strings. 
Given that data compressed from computer files will frequently have patterns of 
increasing or decreasing phrases, what can we do to avoid this problem?  

Of course we can do a lot to help maintain a balanced tree. Many well-known algorithms 
are built expressly to keep nicely built trees from turning into cycle-stealing unbalanced 
lists. 

In the case of sliding-window data compression, however, it is relatively safe to ignore 
the problem. Severely unbalanced trees may develop as data is compressed, but the 
nature of the sliding window almost mandates that unbalanced situations quickly 
converge to more balanced states. Since old phrases are pulled out of the tree as rapidly 
as new ones are put in, the effects of an ordered sequence quickly disappear. 



As a result, tree balancing is usually not built into sliding-window programs. Probably 
the only time it would be considered would be in a production version of a compression 
program that was under severe constraints in terms of CPU cost allowed per byte 
compressed. 

Greedy vs. Best Possible 

Both LZ77 and LZSS are called “greedy” algorithms: They don’t look ahead into the 
input stream to analyze it for the best combination of indices and characters. Consider a 
dictionary-based encoding scheme that used nine bits to encode a single character and 
twenty-five bits to encode a combined index/offset pair. This scheme would have a 
break-even point somewhere between two and three characters, which means it would 
encode a match of two characters as two individual symbols and a match of three 
symbols as in index/offset token.  

Consider now how we would go about encoding the phrase “Go To Statement 
Considered Harmful” if the contents of the phrase dictionary contained the following 
fragments: “Go T” “o S” “tat” “Stat.” A greedy encoder would naturally encode the “Go 
T” phrase of four characters length first, followed by the “o S” phrase of three characters 
length, then the “tat” phrase of three characters length. The output of the encoder up to 
this point would look like this: 

Offset/Length of “Go T”  :  25 bits  
Offset/Length of “o S”  :  25 bits  
Offset/Length of “tat”  :  25 bits  
  ————  
  75 bits  

The encoder looks like it was doing what makes sense, trying to build phrases up instead 
of characters. But an optimal encoder would encode the fragment as shown:  

Offset/Length of “Go “  :  25 bits  
Character ‘T’  :  9 bits  
Character ‘o’  :  9 bits  
Offset/Length of “Stat”  :  25 bits  
  ———-  
  68 bits  

These figures clearly show that the greedy encoder did not do as well as the optimal 
encoder. But it should also be noted that even in this contrived example, the difference 
between the two is only about 10 percent. When using dictionary coding, it is difficult to 
find examples of optimal encoders outperforming greedy encoders by more than a few 
percent. The largest differences occur when only short phrases are in the dictionary, and 
there is a real possibility that encoding single symbols will take less space than a phrase.  



The problem with optimal coding is simply one of payback. Implementing an optimal 
encoder generally means that encoding speed will be drastically reduced. While 
optimizing algorithms are available, they tend to be CPU intensive, and the profit derived 
is generally small. In the world of data compression, a few good heuristics are often more 
respected than a provably superior algorithm. The greedy heuristic in this case is 
definitely the choice of most compression programmers. 

The Code 

The C implementation of LZSS shown here is relatively simple. A production program 
would probably want to take advantage of numerous potential improvements, which will 
be discussed at the end of the chapter.  

By the very nature of LZSS compression, the compression program will be considerably 
more complicated than the decoder. The decoder does not have to worry about 
maintaining the tree or searching for matches. Those two activities are what the encoder 
spends most of its time doing. 

Constants and Macros 

All of the constants and global data used in this program are shown following. The 
parameters of the text window are initially defined by deciding how many bits to allocate 
to the two fields used to define a pointer or index into the text window. In this example. 
INDEX_BIT_COUNT is set to twelve: It will use twelve bits to define an index into the 
text window. The LENGTH_BIT_COUNT macro is set to four bits, which means it will 
use a four-bit field to encode the length of a matching phrase.  

After determining the size of the two bit fields, other macros can be given values derived 
from them. First, the WINDOW_SIZE is directly determined by the size of the 
INDEX_BIT_COUNT. In this case, our text window will consist of 4,096 bytes, or 1 << 
12. Since we have allocated four bits for the length parameter used to encode a phrase, 
we will be able to encode a length of up to sixteen bytes, or 1 << 4. This is defined as the 
RAW_LOOK_AHEAD_SIZE. 

The next macro defined, BREAK_EVEN, determines whether it is better to encode a 
phrase as an index/length pair or as single characters. In this program, the 
BREAK_EVEN point is determined by adding up the INDEX_BIT_COUNT and the 
LENGTH_BIT_COUNT plus 1. These add up to seventeen: it take seventeen bits to 
encode an index/length pair. Because of this, we set our BREAK_EVEN point to one 
character. This means that in the program, any matching phrase that is one character or 
fewer will be encoded as single characters instead of as a phrase.  

#define INDEX_BIT_COUNT        12 
#define LENGTH_BIT_COUNT       4 
#define WINDOW_SIZE            ( 1 << INDEX_BIT_COUNT ) 
#define RAW_LOOK_AHEAD_SIZE    ( 1 << LENGTH_BIT_COUNT ) 
#define BREAK_EVEN    ( ( 1 + INDEX_BIT_COUNT + LENGTH_BIT_COUNT ) / 9 ) 



#define LOOK_AHEAD_SIZE        ( RAW_LOOK_AHEAD_SIZE + BREAK_EVEN ) 
#define TREE_ROOT              WINDOW_SIZE 
#define END-OF_STREAM          0 
#define UNUSED                 0 
#define MOD_WINDOW( a )        ( ( a ) & ( WINDOW_SIZE - 1 ) ) 

The BREAK_EVEN point adjusts our LOOK_AHEAD_SIZE. Since we aren’t going to 
code any phrases with lengths 0 or 1, we can adjust our LOOK_AHEAD_SIZE upward 
by two. So when we want to encode a phrase length, instead of outputting the length, we 
output the length - BREAK_EVEN - 1. This means that the length numbers 0 through 15 
will actually correspond to phrases of length 2 through 17.  

The TREE_ROOT macro defines the node that points to the binary tree root. Since 
TREE_ROOT is defined as index WINDOW_SIZE, it is a special node that actually lies 
outside the binary tree. Whenever the program searches the binary tree, it looks at the 
child of the node at TREE_ROOT to find the root of the tree. 

The END_OF_STREAM constant defined the special index used to place an end-of-file 
indicator in the output stream. In this implementation, END_OF_STREAM is set to zero, 
specifically because the UNUSED node index is also set to zero. Having the UNUSED 
node index set to zero leads to a slight improvement in the program’s performance. By 
using static initialization or be creating the tree with calloc(), we will automatically have 
a three with every node pointer set to UNUSED—which means we don’t have to have a 
specific initialization step. 

The final macro used in the program in MOD_WINDOW. Since input strings can wrap 
around the end of the tree and head back to the front, we need to perform all of our 
arithmetic on window indices modulo the tree size. The MOD_WINDOW macro 
provides a convenient way to do that. 

Global Variables 

The data structures that hold both the text window and the binary tree are defined as 
global variables in this program. They could just as easily be dynamically allocated and 
passed to the encoder and decoder as arguments, but here we cut a few corners by using 
globals.  

The window[ WINDOW_SIZE ] variable holds the last 4,096 characters read in from the 
input file. The last seventeen of those characters will have been read in from the file but 
not yet encoded. These constitute the look-ahead buffer. 

For comparison purposes, we also consider those 4,096 characters to be 4,096 strings, 
with each character being the first character in an 17-byte string. The code in this 
program also universally refers to a string by the index of its first character in the text 
window. So when a piece of code does a comparison on string ‘r’, it is looking at the 
seventeen-byte string starting at position ‘r’ in the text window. 



unsigned char window[ WINDOW_SIZE ]; 
 
struct { 
 int parent; 
 int smaller_child; 
 int larger_child; 
} tree[ WINDOW_SIZE + 1 ]; 

The binary tree in this program is the data structure tree, which consists of an array of 
unnamed structures. Each tree node has only three elements: a parent index, a 
smaller_child index, and a larger_child index. Each of these indices are single numbers 
referring to the string at that position in the text window. An example of how this tree 
might look after reading in twenty-five characters follows. Remember that position 0 in 
the text window is used for other purposes, so strings there don’t get added to the tree.  

 
Figure 8.8  The binary tree after reading in 25 characters. 

One nice feature of this binary tree is that we know in advance how many total nodes will 
be in it, so we can allocate the space in advance instead of while building the tree. This 



saves the code needed for allocating and freeing nodes, and we know that the node for the 
string at position ‘i’ will be in the tree structure at position ‘i.’  

The Compression Code 

The compression code follows. Like all previous programs in this book, it is called with 
pointers to an open input file and to a special BIT_FILE structure that takes the 
compressed output. The BIT_FILE structure lets us use the bit-oriented I/O routines in 
BITIO.H. The compression routine breaks down into three different sections of code: an 
initialization section, the main compression loop, and a termination section.  

void CompressFile( FILE *input. BIT_FILE *output, int argc, 
                            char *argv[] ) 
{ 
  int i; 
  int c; 
  int look_ahead_bytes; 
  int current_position; 
  int replace_count; 
  int match_length; 
  int match_position; 
 
  current_position = 1; 
  for ( i = 0 ; i < LOOK_AHEAD_SIZE ; i++ ) { 
   if ( ( c = getc( input ) ) == EOF ) 
     break; 
   window[ current_position + i ] = c; 
  } 
  look_ahead_bytes = i; 
  InitTree( current_position ); 
  match_length = 0; 
  while ( look_ahead_bytes > 0 ) { 
   if ( match_length > look_ahead_bytes ) 
     match_length = look_ahead_bytes; 
   if ( match_length <= BREAK_EVEN ) { 
    replace_count = 1; 
    OutputBit( output, 1 ); 
    OutputBits( output, window[ current_position ], 8 ); 
  }  else { 
    OutputBit( output, 0 ); 
    OutputBits( output, match_position, INDEX_BIT_COUNT ); 
    OutputBits( output, match_length - ( BREAK_EVEN + 1 ), 
                LENGTH_BIT_COUNT ); 
    replace_count = match_length; 
   } 
   for ( i = 0 ; i < replace_count ; i++ ) { 
    DeleteString( MOD_WINDOW( current_position + LOOK_AHEAD_SIZE ) ); 
    if ( ( c = getc( input ) ) == EOF ) 
     look_ahead_bytes--; 
    else 
     window[ MOD_WINDOW( current_position + LOOK_AHEAD_SIZE ) ] = c; 
    current_position = MOD_WINDOW( current_position + 1 ); 
    if ( look_ahead_bytes ) 
     match_length = AddString( current_position, &match_position ); 



   } 
 } 
 OutputBit( output, 0 ); 
 OutputBits( output, END_OF_STREAM, INDEX_BIT_COUNT ); 
} 

The next macro defined, BREAK_EVEN, determines whether it is better to encode a 
phrase as an index/length pair or as single characters. In this program, the 
BREAK_EVEN point is determined by adding up the INDEX_BIT_COUNT and the 
LENGTH_BIT_COUNT plus 1. These add up to seventeen: it take seventeen bits to 
encode an index/length pair. Because of this, we set our BREAK_EVEN point to one 
character. This means that in the program, any matching phrase that is one character or 
fewer will be encoded as single characters instead of as a phrase.  

#define INDEX_BIT_COUNT        12 
#define LENGTH_BIT_COUNT       4 
#define WINDOW_SIZE            ( 1 << INDEX_BIT_COUNT ) 
#define RAW_LOOK_AHEAD_SIZE    ( 1 << LENGTH_BIT_COUNT ) 
#define BREAK_EVEN    ( ( 1 + INDEX_BIT_COUNT + LENGTH_BIT_COUNT ) / 9 ) 
#define LOOK_AHEAD_SIZE        ( RAW_LOOK_AHEAD_SIZE + BREAK_EVEN ) 
#define TREE_ROOT              WINDOW_SIZE 
#define END-OF_STREAM          0 
#define UNUSED                 0 
#define MOD_WINDOW( a )        ( ( a ) & ( WINDOW_SIZE - 1 ) ) 

The BREAK_EVEN point adjusts our LOOK_AHEAD_SIZE. Since we aren’t going to 
code any phrases with lengths 0 or 1, we can adjust our LOOK_AHEAD_SIZE upward 
by two. So when we want to encode a phrase length, instead of outputting the length, we 
output the length - BREAK_EVEN - 1. This means that the length numbers 0 through 15 
will actually correspond to phrases of length 2 through 17.  

The TREE_ROOT macro defines the node that points to the binary tree root. Since 
TREE_ROOT is defined as index WINDOW_SIZE, it is a special node that actually lies 
outside the binary tree. Whenever the program searches the binary tree, it looks at the 
child of the node at TREE_ROOT to find the root of the tree. 

The END_OF_STREAM constant defined the special index used to place an end-of-file 
indicator in the output stream. In this implementation, END_OF_STREAM is set to zero, 
specifically because the UNUSED node index is also set to zero. Having the UNUSED 
node index set to zero leads to a slight improvement in the program’s performance. By 
using static initialization or be creating the tree with calloc(), we will automatically have 
a three with every node pointer set to UNUSED—which means we don’t have to have a 
specific initialization step. 

The final macro used in the program in MOD_WINDOW. Since input strings can wrap 
around the end of the tree and head back to the front, we need to perform all of our 
arithmetic on window indices modulo the tree size. The MOD_WINDOW macro 
provides a convenient way to do that. 



Global Variables 

The data structures that hold both the text window and the binary tree are defined as 
global variables in this program. They could just as easily be dynamically allocated and 
passed to the encoder and decoder as arguments, but here we cut a few corners by using 
globals.  

The window[ WINDOW_SIZE ] variable holds the last 4,096 characters read in from the 
input file. The last seventeen of those characters will have been read in from the file but 
not yet encoded. These constitute the look-ahead buffer. 

For comparison purposes, we also consider those 4,096 characters to be 4,096 strings, 
with each character being the first character in an 17-byte string. The code in this 
program also universally refers to a string by the index of its first character in the text 
window. So when a piece of code does a comparison on string ‘r’, it is looking at the 
seventeen-byte string starting at position ‘r’ in the text window. 

unsigned char window[ WINDOW_SIZE ]; 
 
struct { 
 int parent; 
 int smaller_child; 
 int larger_child; 
} tree[ WINDOW_SIZE + 1 ]; 

The binary tree in this program is the data structure tree, which consists of an array of 
unnamed structures. Each tree node has only three elements: a parent index, a 
smaller_child index, and a larger_child index. Each of these indices are single numbers 
referring to the string at that position in the text window. An example of how this tree 
might look after reading in twenty-five characters follows. Remember that position 0 in 
the text window is used for other purposes, so strings there don’t get added to the tree.  



 
Figure 8.8  The binary tree after reading in 25 characters. 

One nice feature of this binary tree is that we know in advance how many total nodes will 
be in it, so we can allocate the space in advance instead of while building the tree. This 
saves the code needed for allocating and freeing nodes, and we know that the node for the 
string at position ‘i’ will be in the tree structure at position ‘i.’  

The Compression Code 

The compression code follows. Like all previous programs in this book, it is called with 
pointers to an open input file and to a special BIT_FILE structure that takes the 
compressed output. The BIT_FILE structure lets us use the bit-oriented I/O routines in 
BITIO.H. The compression routine breaks down into three different sections of code: an 
initialization section, the main compression loop, and a termination section.  

void CompressFile( FILE *input. BIT_FILE *output, int argc, 
                            char *argv[] ) 
{ 
  int i; 
  int c; 



  int look_ahead_bytes; 
  int current_position; 
  int replace_count; 
  int match_length; 
  int match_position; 
 
  current_position = 1; 
  for ( i = 0 ; i < LOOK_AHEAD_SIZE ; i++ ) { 
   if ( ( c = getc( input ) ) == EOF ) 
     break; 
   window[ current_position + i ] = c; 
  } 
  look_ahead_bytes = i; 
  InitTree( current_position ); 
  match_length = 0; 
  while ( look_ahead_bytes > 0 ) { 
   if ( match_length > look_ahead_bytes ) 
     match_length = look_ahead_bytes; 
   if ( match_length <= BREAK_EVEN ) { 
    replace_count = 1; 
    OutputBit( output, 1 ); 
    OutputBits( output, window[ current_position ], 8 ); 
  }  else { 
    OutputBit( output, 0 ); 
    OutputBits( output, match_position, INDEX_BIT_COUNT ); 
    OutputBits( output, match_length - ( BREAK_EVEN + 1 ), 
                LENGTH_BIT_COUNT ); 
    replace_count = match_length; 
   } 
   for ( i = 0 ; i < replace_count ; i++ ) { 
    DeleteString( MOD_WINDOW( current_position + LOOK_AHEAD_SIZE ) ); 
    if ( ( c = getc( input ) ) == EOF ) 
     look_ahead_bytes--; 
    else 
     window[ MOD_WINDOW( current_position + LOOK_AHEAD_SIZE ) ] = c; 
    current_position = MOD_WINDOW( current_position + 1 ); 
    if ( look_ahead_bytes ) 
     match_length = AddString( current_position, &match_position ); 
   } 
 } 
 OutputBit( output, 0 ); 
 OutputBits( output, END_OF_STREAM, INDEX_BIT_COUNT ); 
} 

Initialization 

The compression loop needs a steady state before it can start. Two things need to be done: 
first, the look-ahead buffer needs to be loaded; and second, the tree needs to be initialized.  

The code to load the look-ahead buffer is shown next. It tries to load up to seventeen 
bytes into the buffer. After the loading is complete, two local variables are set up so that 
the main loop can begin executing. First, current_position is set to one. This means that 
the look-ahead buffer now starts at position 1. Second, look-ahead_bytes is set to the 
number of bytes left to be encoded in the look-ahead buffer. 



current_position = 1; 
for ( i = 0 ; i < LOOK_AHEAD_SIZE ; i++ ) { 
  if ( ( c = getc( input ) ) == EOF ) 
    break; 
  window[ current_position + i ] = c; 
} 
look_ahead_bytes = i; 

The look-ahead_bytes variable will be set to seventeen most of the time the main loop 
executes. Usually seventeen characters are left in the look-ahead buffer to encode. Once 
the program approaches the end of the file, that number will start to drop.  

The next step in the initialization program calls InitTree(). InitTree() establishes a root 
node for the tree. The first node put into the tree will be at the current position, position 1. 
The code in InitTree() executes a standard insertion algorithm, establishing the child of 
the root pointer node and setting up the parents and children of position 1. 

void InitTree( int r ) 
{ 
    tree[ TREE_ROOT ].larger_child = r; 
    tree[ r ].parent = TREE_ROOT; 
    tree[ r ].larger_child = UNUSED; 
    tree[ r ].smaller_child = UNUSED; 
} 

The final step in the initialization of CompressFile sets up a match_length of one. This 
forces the encoding loop to output the first character of the look-ahead buffer as a single 
character instead of as a phrase. It would not be possible at this point even to search for a 
match to the string at position 1, since it is the only string in the tree.  

The Main Loop 

The main loop runs as long as characters are left in the look-ahead buffer to encode. It 
does three things in the loop: (1) It encodes the current phrase in the look-ahead buffer; (2) 
it reads new characters into the look-ahead buffer while deleting the oldest from the tree; 
and (3) it inserts the new strings defined by the new characters into the binary tree while 
the new characters are being loaded into the look-ahead buffer.  

while ( look_ahead_bytes > 0 ) { 
 if ( match_length > look_ahead_bytes ) 
  match_length = look_ahead_bytes; 
 if ( match_length <= BREAK_EVEN ) { 
  replace_count = 1; 
  OutputBit( output, 1 ); 
  OutputBits( output, window[ current_position ], 8 ); 
 } else { 
  OutputBit( output, 0 ); 
  OutputBits( output, match_position, INDEX_BIT_COUNT ); 
  OutputBits( output, match_length - ( BREAK_EVEN + 1 ), 
              LENGTH_BIT_COUNT ); 
  replace_count = match_length; 



 } 
 for ( i = 0 ; i < replace_count ; i++ ) { 
  DeleteString( MOD_WINDOW( current_position + LOOK_AHEAD_SIZE ) ); 
  if ( ( c = getc( input ) ) == EOF ) 
   look_ahead_bytes--; 
  else 
   window[ MOD_WINDOW( current_position + LOOK_AHEAD_SIZE ) ] = c; 
  current_position = MOD_WINDOW( current_position + 1 ); 
  if ( look_ahead_bytes ) 
   match_length = AddString( current_position, &match_position ); 
 } 
} 

The main loop assumes that at the top of the loop, the best match length and position are 
stored in variables match_length and match_position. The AddString() operation 
normally does this at the bottom of the loop, but the first time through the loop the 
initialization code set match_length to zero.  

Since the match_length is known, the code just has to decide whether to encode the 
current phrase in the look-ahead buffer as an index/length pair or whether to output a 
single character. All that is necessary here is a simple comparison against 
BREAK_EVEN. If the current phrase match length is more than BREAK_EVEN, it 
makes sense to encode it as a phrase. Otherwise it is encoded as a single character. 

The encoding process is straightforward. The output sequence for a solo character is 
output as a single 1-bit, followed by the eight bits in the character. For an index/position 
token, the encoder outputs a 0-bit, followed by the twelve-bit position and the four-bit 
length. The length is encoded as a number from zero to fifteen that corresponds to a 
length of two to seventeen. 

After encoding, the look-ahead buffer has to be loaded with new characters to replace the 
ones that have been output. If a phrase was encoded, the variable replace_count is set to 
the length of the phrase, otherwise, replace_count is set to one to indicate that a single 
character needs to be replace. 

The replacement loop code is shown in the following code excerpt.. New characters read 
into the look-ahead buffer land on top of the oldest phrases in the text window. 
Accordingly, before each character is read in, the DeleteString() routine deletes the older 
phrase. 

for ( i = 0 ; i < replace_count ; i++ ) { 
 DeleteString( MOD_WINDOW( current_position + LOOK_AHEAD_SIZE ) ); 
 if ( ( c = getc( input ) ) == EOF ) 
  look_ahead_bytes--; 
 else 
  window[ MOD_WINDOW( current_position + LOOK_AHEAD_SIZE ) ] = c; 
 current_position = MOD_WINDOW( current_position + 1 ); 
 if ( look_ahead_bytes ) 
  match_length = AddString( current_position, &match_position ); 
} 



After the new character is read in, the current_position is updated, and the AddString() 
routine adds a new phrase to the tree. AddString() also returns the position and length of 
the best match for the inserted string. These variables will then be used at the top of the 
loop to encode the current phrase in the look-ahead buffer.  

The Exit Code 

The exit code for the compression routine is very simple to implement in this program. 
All that needs to be done is to encode the special END_OF_STREAM position code so 
that the decoder will know that there is no more data to pull out of the compressed stream. 
Its job is completed, and it can then return.  

AddString() 

The bulk of the work done by the compression routine takes place in AddString(). This 
routine does two jobs. First, it adds a new string to the binary tree. Second, it tracks the 
string currently in the tree that best matches the one being inserted.  

The process of locating the node for inspection of the new string uses standard techniques 
for traversing a binary tree. AddString first checks to see if the new string is the 
END_OF_STREAM node. If it is, it shouldn’t be inserted into the tree, so it takes 
immediate return with a match_length of zero. This forces the encoder to output a single 
character instead of trying to encode a phrase at index 0. 

After checking for a bad node, the test_node and initial match_length are set up. 
Throughout the main loop, test_node will point to the current node that will be compared 
to the new_node. The match_length variable will contain the current longest match found 
during traversal of the tree. 

int AddString( int new_node, int *match_position ) 
{ 
  int i; 
  int test_node; 
  int delta; 
  int match_length; 
  int *child; 
 
  if ( new_node == END_OF_STREAM ) 
   return( 0 ); 
  test_node = tree[ TREE_ROOT ].larger_child; 
  match_length = 0; 
  for ( ; ; ) { 
    for ( i = 0 ; i < LOOK_AHEAD_SIZE ; i++ ) { 
     delta = window[ MOD_WINDOW( new_node + i ) ] - 
       window[ MOD_WINDOW( test_node + i ) ]; 
     if ( delta != 0 ) 
      break; 
  } 
  if ( i >= match_length ){ 
    match_length = i; 



    *match_position = test_node; 
       if ( match_length >= LOOK_AHEAD_SIZE ) { 
         ReplaceNode( test_node, new_node ); 
         return( match_length ); 
       } 
    } 
    if ( delta >= 0 ) 
      child = &tree[ test_node ].larger_child; 
    else 
      child = &tree[ test_node ].smaller_child; 
    if ( *child == UNUSED ) { 
      *child = new_node; 
      tree[ new_node ].parent = test_node; 
      tree[ new_node ].larger_child = UNUSED; 
      tree[ new_node ].smaller_child = UNUSED; 
      return( match_length ); 
 
    } 
    test_node = *child; 
  } 
} 

At this point, the main comparison loop is entered. The first section executes a 
comparison of the test_node and the new_node. Two pieces of information are available 
after falling out of the loop. The first is the value of delta. The delta variable will be less 
than one if the string at new_node is less than the test_node, zero if they are the same, 
and one if the new_node is greater. The second, found in the loop variable i, tells how 
many characters in the two strings were identical, or the match_length for a particular 
string.  

for ( i = 0 ; i < LOOK_AHEAD_SIZE ; i++ ) { 
  delta = window[ MOD_WINDOW( new_node + i ) ] - 
          window[ MOD_WINDOW( test_node + i ) ]; 
  if ( delta != 0 ) 
    break; 
} 

After the comparison code completes, the main loop tests whether the match for this 
phrase is the longest one recorded so far. If it is, the match_length variable is updated, 
and the test_node position is saved.  

if ( i >= match_length ) { 
  match_length = i; 
  *match_position = test_node; 
  if ( match_length >= LOOK_AHEAD_SIZE ) { 
    ReplaceNode( test_node, new_node ); 
    return( match_length ); 
  } 
} 

Frequently, the phrase in the look-ahead buffer is an exact match for the test_node. When 
this is the case, two things happen. First, since the longest match is found, the code will 
exit the AddString() routine. But before exiting, it performs a node replacement by 



deleting the test_node and replacing it with the new_node. It could just add new_node to 
the binary tree, but there is really no point to it, test_node will be redundant data taking 
up time in the search path if it just uses the normal insertion code. Instead, a special 
routine replaces test_node with new_node and returns. This leaves a sparser tree that can 
be searched more quickly. And, since test_node would have been deleted before 
new_node, it doesn’t sacrifice any compression by doing this.  

The final section of the main test loop is the tree navigation step. The delta variable tells 
whether to follow the larger_child or smaller_child branches from the test_node. If the 
child we are supposed to follow is UNUSED, we have gone as far as we can in the tree. 
At this point, the code inserts new_node into the binary tree at the correct child and 
returns. Otherwise, it moves to the new test_node and goes back to the start of the test 
loop. 

if ( delta >= 0 ) 
  child = &tree[ test_node ].larger_child; 
else 
  child = &tree[ test_node ].smaller_child; 
if ( *child == UNUSED ) { 
  *child = new_node; 
  tree[ new_node ].parent = test_node; 
  tree[ new_node ].larger_child = UNUSED; 
  tree[ new_node ].smaller_child = UNUSED; 
  return( match_length ); 
} 
test_node = *child; 

DeleteString() 

DeleteString() is called from the main compression loop every time a new character is 
read into the look-ahead buffer. It uses a standard binary tree deletion algorithm to delete 
a phrase from the text window.  

DeleteString() first determines whether the node is really in the tree. It is possible for the 
AddString() routine to have already deleted a string because it was a duplicate. If this is 
the case, the work has been done, and the routine can return. 

void DeleteString( int p ) 
{ 
 int replacement; 
 if ( tree[ p ].parent == UNUSED ) 
  return; 
 if ( tree[ p ].larger_child == UNUSED ) 
  ContractNode( p. tree[ p ].smaller_child ); 
 else if ( tree[ p ].smaller_child == UNUSED) 
  ContractNode( p, tree[ p ].larger_child ); 
 else { 
  replacement = FindNextNode( p ); 
  DeleteString( replacement ); 
  ReplaceNode( p, replacement ); 
 } 



} 

If the string is presently in the tree, there are two possibilities for a deletion strategy. If 
either of the node’s children are unused, deleting the node is just a matter of closing the 
link between the current node’s parent and the child in use, effectively pulling the node 
out of the tree. This is done by a routine called ContractNode().  

 
Figure 8.9  Tree before contraction of node p. 

 
Figure 8.10  Tree after contraction of node p. 

The situation is a little more complicated if the node to be deleted has children on both 
the larger_child and smaller_child nodes. When this is the case, the alternate deletion 
algorithm has to be used. The way to delete node p when both children are used to find 
the node in the tree either directly before or indirectly after node p in the ordered list of 
nodes. In this program, we find the next smaller node. This is done in the FindNextNode() 
routine and is accomplished by taking the first smaller_child branch, then following the 
larger_child branches until an UNUSED smaller_child is found. This next smaller node 
in the list is the replacement node.  

The replacement node is then deleted from the tree, with a recursive call to DeleteString(). 
Out of control recursion is not a worry at this point, since the replacement node by 
definition has at least one UNUSED child. This means we will never go more than one 
level deep in our recursion. 

After the replacement node has been deleted, it is used to replace the original deleted 
node. This is done by a routine called ReplaceNode() which simply inserts it in the tree in 
the same position as the original node. 



Binary Tree Support Routines 

The support routines used by AddString() and DeleteString() are ContractNode(), 
ReplaceNode(), and FindNextNode(). ContractNode() deletes a node when one of the 
children is UNUSED. To do this, the used child is linked with the parent, effectively 
pulling the node out of the tree. The deleted node has its parent node set to UNUSED, 
which is what is used internally to determine if a node is in use.  

void ContractNode( int old_node, int new_node ) 
{ 
 tree[ new_node ].parent = tree[ old_node ].parent; 
 if ( tree[ tree[ old_node ].parent ].larger_child == old_node ) 
  tree[ tree[ old_node ].parent ].larger_child = new_node; 
 else 
  tree[ tree[ old_node ].parent ].smaller_child = new_node; 
 tree[ old_node ].parent = UNUSED; 
} 

ReplaceNode() is used during the deletion process when a new_node is going to be 
dropped into the tree on top of the old_node. It is assumed that the new_node is not 
currently linked to the tree. When the operation completes, the old_node will have been 
removed, and this is indicated by setting the parent to UNUSED.  

void ReplaceNode( int old_node, int new_node ) 
{ 
 int parent; 
 
 parent = tree[ old_node ].parent; 
 if ( tree[ parent ].smaller_child == old_node ) 
  tree[ parent ].smaller_child = new_node; 
 else 
  tree[ parent ].larger_child = new_node; 
 tree[ new_node ] = tree[ old_node ]; 
 tree[ tree[ new_node ].smaller_child ].parent = new_node; 
 tree[ tree[ new_node ].larger_child ].parent = new_node; 
 tree[ old_node ].parent = UNUSED; 
} 

FindNextNode() is called when the DeleteString() routine needs to find the next smaller 
node in the sorted list. It first takes the smaller branch from the starting node, then 
follows the larger branches until an UNUSED child is located. The node with the 
UNUSED larger_child is the next highest in the list. This routine assumes that the node 
has a next smallest node, meaning it has to have a smaller_child branch.  

int FindNextNode( int node ) 
{ 
 int next; 
 
 next = tree[ node ].smaller_child; 
 while ( tree[ next ].larger_child != UNUSED ) 
  next = tree[ next ].larger_child; 
 return( next ); 



} 

The Expansion Routine 

The LZSS compression algorithm is highly asymmetrical. The compression routine is 
fairly complicated, and it does quite a bit of work for every character or phrase that is 
compressed. In comparison, the expansion code is extremely simple. It has very little 
work to do, and in fact it can operate nearly as fast as an ordinary copy routine. This 
makes LZSS an excellent choice for data that needs to be compressed once and expanded 
many times.  

void ExpandFile( BIT_FILE *input, FILE *output, int argc, char *argv[] ) 
{ 
 int i; 
 int current_position; 
 int c; 
 int match_length; 
 int match_position; 
 
 current_position = 1; 
 for ( ; ; ) { 
  if ( InputBit( input ) ) { 
   c = InputBits( input, 8 ); 
   putc( c, output ); 
   window[ current_position ] = c; 
   current_position = MOD_WINDOW( current_position + 1 ); 
  } else { 
   match_position = InputBits( input, INDEX_BIT_COUNT ); 
   if ( match_position == END_OF_STREAM ) 
    break; 
   match_length = InputBits( input, LENGTH_BIT_COUNT ); 
   match_length += BREAK_EVEN; 
   for ( i = 0 ; i <= match_length ; i++ ) { 
    c = window[MOD_WINDOW( match_position + i ) ]; 
    putc( c, output ); 
    window[ current_position ] = c; 
    current_position = MOD_WINDOW( current_position + 1 ); 
   } 
  } 
 } 
} 

Virtually all the time in the expansion routine is spent in the main loop. The first step 
reads in a single bit. If this is a zero, the next byte will contain an unencoded character. 
The character is read in, output to the file, and put in the text window at the current 
position.  

If the input bit was a one instead of a zero, the expansion routine reads in a 
match_position and length instead of a character. It checks to see if the match_position is 
actually the encoded END_OF_STREAM message. If so, the program is done, and it can 
exit. Otherwise, the match_length is read in and adjusted to range 2 through 17. 



Once the match_position and length are known, a short loop executes. In this loop, the 
character from the match string is pulled out of the text window, stored in the file, and 
put in the window at the current position, which is then updated. 

That is the entire expansion routine. It is easy to see why expansion takes place so 
quickly. 

Improvements 

While LZSS makes for a fairly good compression algorithm, improvements can be made 
to it. For instance, LZSS compresses poorly when it starts since it does not have any data 
in the text window for matches. It is fairly simple to preload the window with 
WINDOW_SIZE-LOOK_AHEAD_SIZE characters, then add all the appropriate strings 
to the binary tree.  

The trouble with preloading the window is deciding what to preload it with, since we 
have no idea what type of data will come up in the input stream. Probably the easiest 
thing to do is to insert 256 strings that contain 16 consecutive occurrences of all of the 
possible symbols in the alphabet. Unfortunately, runs of repeated characters are the types 
of initial data that will be helped the least by preloading, but there will be some 
improvement. 

Much experimentation can be done with the number of bits used in the index and the 
length codes. It is possible to achieve better compression by increasing the number of bits 
used for each of these, but there are at least two negative effects. First, the compression 
speed will suffer as the window grows, due to the extra work required to navigate and 
maintain a larger binary tree. Second, compression of smaller files will suffer due to the 
increased time needed to build a full dictionary. Some of this startup overhead can be 
reduced by starting the compression code with a smaller code size and working up to the 
larger sizes as the dictionary fills up. 

One way the programs used here can be sped up dramatically is by using blocked I/O. 
The tokens output by the compression program here are all exactly either one or two 
bytes. It is possible to buffer these bytes up while accumulating the flag bits. When eight 
flag bits have been output, the flag byte can be sent, followed by between 8 and 16 bytes 
of byte-oriented data. Since the eight to sixteen bytes can be written using conventional 
byte-oriented code, the compression routines will run considerably faster. 

Another technique which speeds up both compression and expansion is to create a “ghost 
buffer” at the end of the text window. In the case of this program the ghost buffer would 
hold seventeen characters, which would be identical to the characters in the first 
seventeen locations of the window. By maintaining a copy of the first seventeen bytes in 
the ghost buffer, the comparison routines can run without using modulo arithmetic on the 
indices. Since the compression program spends so much time on string comparison, this 
results in big time savings. 



One final bit of inefficiency found in LZSS relates to the handling of duplicate strings. 
We remove duplicate strings from the binary tree, but we leave them in the text window, 
where they take up valuable space. It is possible to free up the space used by these 
duplicate strings in the text window, allowing for expansion of the dictionary. However, 
the side effect of this is that the decompression program has to keep track of duplicate 
strings, which will result in a significant cutback in expansion speed. 

The Code 
/*********************** Start of LZSS.C *********************** 
* 
* This is the LZSS module, which implements an LZ77 style compression 
* algorithm. As implemented here it uses a 12 bit index into the 
sliding 
* window, and a 4 bit length, which is adjusted to reflect phrase 
* lengths of between 2 and 17 bytes. 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <ctype.h> 
#include "bitio.h" 
 
/* 
* Various constants used to define the compression parameters. The 
* INDEX_BIT_COUNT tells how many bits we allocate to indices into the 
* text window. This directly determines the WINDOW_SIZE. The 
* LENGTH_BIT_COUNT tells how many bits we allocate for the length of 
* an encode phrase. This determines the size of the look-ahead buffer. 
* The TREE_ROOT is a special node in the tree that always points to 
* the root node of the binary phrase tree. END_OF_STREAM is a special 
* index used to flag the fact that the file has been completely 
* encoded, and there is no more data. UNUSED is the null index for 
* the tree. MOD_WINDOW() is a macro used to perform arithmetic on tree 
* indices. 
* 
*/ 
 
#define INDEX_BIT_COUNT       12 
#define LENGTH_BIT_COUNT      4 
#define WINDOW_SIZE           ( 1 << INDEX_BIT_COUNT ) 
#define RAW_LOOK_AHEAD_SIZE   ( 1 << LENGTH_BIT_COUNT ) 
#define BREAK_EVEN            ( ( 1 + INDEX_BIT_COUNT + 
                              LENGTH_BIT_COUNT ) / 9 ) 
 
#define LOOK_AHEAD_SIZE       (RAW_LOOK_AHEAD_SIZE + BREAK_EVEN) 
#define TREE_ROOT             WINDOW_SIZE 
#define END_OF_STREAM         0 
#define UNUSED                0 
#define MOD_WINDOW( a )       ( ( a ) & ( WINDOW_SIZE - 1 ) ) 
 
char *CompressionName = "LZSS Encoder"; 
char *Usage      = "in-file out-file\n\n"; 
 
/* 



* These are the two global data structures used in this program. 
* The window[] array is exactly that, the window of previously seen 
* text, as well as the current look-ahead text. The tree[] structure 
* contains the binary tree of all of the strings in the window sorted 
* in order. 
*/ 
 
unsigned char window WINDOW_SIZE ]; 
 
struct { 
 int parent; 
 int smaller_child; 
 int larger_child; 
} tree WINDOW_SIZE + 1 ]; 
 
/* 
* Function prototypes for both ANSI C compilers and their K&R brethren. 
*/ 
 
#ifdef __STDC__ 
 
void InitTree( int r ); 
void ContractNode( int old_node, int new_node ); 
void ReplaceNode( int old_node, int new_node ); 
int FindNextNode( int node ); 
void DeleteString( int p ); 
int AddString( int new_node, int *match_position ); 
void CompressFile( FILE *input, BIT_FILE *output, 
                   int argc, char *argv[] ); 
void ExpandFile( BIT_FILE *input, FILE *output, int argc, char 
*argv[] ); 
 
#else 
 
void InitTree(); 
void ContractNode(); 
void ReplaceNode(); 
int FindNextNode(); 
void DeleteString(); 
int AddString(); 
void CompressFile(); 
void ExpandFile(); 
 
#endif 
 
/* 
* Since the tree is static data, it comes up with every node 
* initialized to 0, which is good, since 0 is the UNUSED code. 
* However, to make the tree really usable, a single phrase has to be 
* added to the tree so it has a root node. That is done right here. 
*/ 
void InitTree( r ) 
int r; 
{ 
 tree[ TREE_ROOT ].larger_child = r; 
 tree[ r ].parent = TREE_ROOT; 
 tree[ r ].larger_child = UNUSED; 



 tree[ r ].smaller_child = UNUSED; 
} 
 
/* 
* This routine is used when a node is being deleted. The link to 
* its descendant is broken by pulling the descendant in to overlay 
* the existing link. 
*/ 
void ContractNode( old_node, new_node ) 
int old_node; 
int new_node; 
{ 
 tree[ new_node ].parent = tree[ old_node ]. parent; 
 if ( tree[ tree[ old_node ].parent ].larger_child == old_node ) 
  tree[ tree[ old_node ].parent ].larger_child = new_node; 
 else 
  tree[ tree[ old_node ].parent ].smaller_child = new_node; 
 tree[ old_node ].parent = UNUSED; 
} 
 
/* 
* This routine is also used when a node is being deleted. However, 
* in this case, it is being replaced by a node that was not previously 
* in the tree. 
*/ 
void ReplaceNode( old_node, new_node ) 
int old_node; 
int new_node; 
{ 
 int parent; 
 
 parent = tree[ old_node ].parent; 
 if ( tree[ parent ].smaller_child == old_node ) 
  tree[ parent ].smaller_child = new_node; 
 else 
  tree[ parent ].larger_child = new_node; 
 tree[ new_node ] = tree[ old_node ]; 
 tree[ tree[ new_node ].smaller_child ].parent = new_node; 
 tree[ tree[ new_node ].larger_child ].parent = new_node; 
 tree[ old_node ].parent = UNUSED; 
} 
 
/* 
* This routine is used to find the next smallest node after the node 
* argument. It assumes that the node has a smaller child. We find 
* the next smallest child by going to the smaller_child node, then 
* going to the end of the larger_child descendant chain. 
*/ 
int FindNextNode( node ) 
int node; 
{ 
 int next; 
 
 next = tree[ node ].smaller_child; 
 while ( tree[ next ].larger_child != UNUSED ) 
  next = tree[ next ].larger_child; 
 return( next ); 



} 
 
/* 
* This routine performs the classic binary tree deletion algorithm. 
* If the node to be deleted has a null link in either direction, we 
* just pull the non-null link up one to replace the existing link. 
* If both links exist, we instead delete the next link in order, which 
* is guaranteed to have a null link, then replace the node to be 
deleted 
* with the next link. 
*/ 
void DeleteString( p ) 
int p; 
{ 
 int replacement; 
 
 if ( tree[ p ].parent == UNUSED ) 
  return; 
 if ( tree[ p ].larger_child == UNUSED ) 
  ContractNode( p, tree[ p ].smaller_child ); 
 else if ( tree[ p ].smaller_child == UNUSED ) 
  ContractNode( p, tree[ p ].larger_child ); 
 else { 
  replacement = FindNextNode( p ); 
  DeleteString( replacement ); 
  ReplaceNode( p, replacement ); 
 } 
} 
 
/* 
* This where most of the work done by the encoder takes place. This 
* routine is responsible for adding the new node to the binary tree. 
* It also has to find the best match among all the existing nodes in 
* the tree, and return that to the calling routine. To make matters 
* even more complicated, if the new_node has a duplicate in the tree, 
* the old_node is deleted, for reasons of efficiency. 
*/ 
 
int AddString( new_node, match_position ) 
int mew_node; 
int *match_position; 
{ 
 int i; 
 int test_node; 
 int delta; 
 int match_length; 
 int *child; 
 
 if ( new_node == END_OF_STREAM ) 
  return( 0 ); 
 test_node = tree[ TREE_ROOT ].larger_child; 
 match_length = 0; 
 for ( ; ; ) { 
  for ( i = 0 ; i < LOOK_AHEAD_SIZE ; i++ ) { 
     delta = window[ MOD_WINDOW( new_node + i ) ] - 
         window[ MOD_WINDOW( test_node + i ) ]; 
     if ( delta != 0 ) 



         break; 
  } 
  if ( i >= match_length ) { 
   match_length = i; 
   *match_position = test_node; 
   if ( match_length >= LOOK_AHEAD_SIZE ) { 
    ReplaceNode( test_node, new_node ); 
    return( match_length ); 
   } 
  } 
  if ( delta >= 0 ) 
   child = &tree[ test_node ]. larger_child; 
  else 
   child = &tree[ test_node ].smaller-child; 
  if ( *child == UNUSED ) { 
   *child = new_node; 
   tree[ new_node ].parent = test_node; 
   tree[ new_node ].larger_child = UNUSED; 
   tree[ new_node ].smaller_child = UNUSED; 
   return( match_length ); 
  } 
  test_node = *child; 
 } 
} 
 
/* 
* This is the compression routine. It has to first load up the look 
* ahead buffer, then go into the main compression loop. The main loop 
* decides whether to output a single character or an index/length 
* token that defines a phrase. Once the character or phrase has been 
* sent out, another loop has to run. The second loop reads in new 
* characters, deletes the strings that are overwritten by the new 
* character, then adds the strings that are created by the new 
* character. 
*/ 
 
void CompressFile( input, output, argc, argv ) 
FILE *input; 
BIT_FILE *output; 
int argc; 
char *argv[]; 
{ 
 int i; 
 int c; 
 int look_ahead_bytes; 
 int current_position; 
 int replace_count; 
 int match_length; 
 int match_position; 
 
 current_position = 1; 
 for ( i = 0 ; i < LOOK_AHEAD_SIZE ; i++ ) { 
  if ( ( c = getc( input ) ) == EOF ) 
   break; 
  window[ current_position + i ] = (unsigned char) c; 
 } 
 look_ahead_bytes = 1; 



 InitTree( current_position ); 
 match_length = 0; 
 match_position = 0; 
 while ( look_ahead_bytes > 0 ) { 
  if ( match_length > look_ahead_bytes ) 
   match_length = look_ahead_bytes; 
  if ( match_length <= BREAK_EVEN ) { 
   replace_count = 1; 
   OutputBit( output, 1 ); 
   OutputBits( output, 
        (unsigned long)window[ current_position ], 8 ); 
  } else { 
   OutputBit( output, 0 ); 
   OutputBits( output, 
        (unsigned long) match_position, INDEX_BIT_COUNT ); 
   OutputBits( output, 
        (unsigned long) ( match_length - ( BREAK_EVEN + 1 ) ), 
        LENGTH_BIT_COUNT ); 
   replace_count = match_length; 
  } 
  for ( i = 0 ; i < replace_count ; i++ ) { 
   DeleteString( MOD_WINDOW( current_position + LOOK_AHEAD-SIZE ) ); 
   if ( ( c = getc( input ) ) == EOF ) 
    look_ahead_bytes--; 
   else 
    window[ MOD_WINDOW ( current_position + LOOK_AHEAD_SIZE ) ] 
              = (unsigned char) c; 
   current position = MOD_WINDOW( current_position + 1 ); 
   if ( look ahead_bytes ) 
    match_length = AddString( current_position, &match_position ); 
  } 
 } 
 OutputBit( output, 0 ); 
 OutputBits( output, 
         (unsigned long) END_OF_STREAM, INDEX_BIT_COUNT); 
 while ( argc-- > 0 ) 
  printf( "Unknown argument: %s\n", *argv++ ); 
} 
 
/* 
* This is the expansion routine for the LZSS algorithm. All it has 
* to do is read in flag bits, decide whether to read in a character or 
* a index/length pair, and take the appropriate action. 
*/ 
 
void ExpandFile( input, output, argc, argv ) 
BIT_FILE *input; 
FILE *output; 
int argc; 
char *argv[]; 
{ 
  int i; 
  int current_position; 
  int c; 
  int match_length; 
  int match_ position; 
 



  current_position = 1; 
  for ( ; ; ) { 
   if ( InputBit( input ) ) { 
    c = (int) InputBits( input, 8 ); 
    putc( c, output ); 
    window[ current_position ] = (unsigned char) c; 
    current_position = MOD_WINDOW( current_position + 1 ); 
   } else { 
    match_position = (int) InputBits( input, INDEX_BIT_COUNT ); 
    if ( match_position == END_OF_STREAM ) 
     break; 
    match_length = (int) InputBits( input, LENGTH_BIT_COUNT ); 
    match_length += BREAK_EVEN; 
   for ( i = 0 ; i <= match_length ; i++ ) { 
    c = window[ MOD_WINDOW( match_position + i ) ]; 
    putc( c, output ); 
    window[ current_position ] = (unsigned char) c; 
    current_position = MOD_WINDOW( current_position + 1 ); 
   } 
  } 
 } 
 while ( argc-- > 0 ) 
  printf( "Unknown argument: %s\n", *argv++ ); 
} 
 
/************************* End of LZSS.C *************************/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 9 
LZ78 Compression  
The LZ77 algorithms have a deficiency that must have troubled their creators, Jacob Ziv 
and Abraham Lempel. These algorithms use only a small window into previously seen 
text, which means they continuously throw away valuable phrases because they slide out 
of the dictionary. The phrase “Jacob Ziv,” for example, may have appeared in the text in 
Chapter 7. If this book were being compressed using an LZ77 algorithm, it almost 
certainly would not appear in the sliding window by the time we arrived at this chapter. 
But the book would compress better if “Jacob Ziv” did appear in the dictionary, since it 
shows up four or five times in scattered locations throughout the text.  

The sliding window makes LZ77 algorithms biased toward exploiting recency in the text. 
Many, but not all, streams of data tend to “look” more like what has been seen recently 
than what was seen long ago. Encoding a telephone book is a good example of this. After 
encoding the first “Jones” entry, it would seem that the word “Jones” was showing up 
everywhere. But the word “Adams,” seen long ago, would probably not show up at all. 
As we moved through the phone book, recency effects would be patently obvious, and 
LZ77 would take advantage of them. 

While compressing the phone book, if we looked carefully, we would also notice that 
some data was more or less immune to recency effects. The street address associated with 
each listing, for example, would only show the effect faintly, when two listings with the 
same last name lived at the same address. This would result in fewer matches to text in 
the window, leading to less effective compression. 

A second deficiency in LZ77 compression is the limited size of a phrase that can be 
matched. The longest match is approximately the size of the look-ahead buffer, which in 
the previous chapter was just 17 bytes. Many of the seventeen-byte matches found when 
compressing using that algorithm may actually be much longer. 

Can LZ77 Improve? 

One obvious way to tackle these problems is simply to start tinkering with the size of the 
window and the size of the look-ahead buffer. Instead of using a 4K window and a 
seventeen-byte buffer, for example, why not use a 64K text window and a 1K look-ahead 
buffer? Wouldn’t that address both problems effectively?  

While raising the size of both parameters does seem to address these problems, the 
scheme has two major drawbacks. First, when we increase the buffer size from 4K to 
64K, we now need sixteen bits to encode an index location instead of twelve. And instead 
of needing four bits to encode a phrase length, we now need ten. So the cost of encoding 
a phrase rises from seventeen bits to twenty-seven. 



This 50 percent increase in the bit size of an index/length token can have a severely 
negative impact on the compression algorithm. For one thing, it will change the 
BREAK_EVEN point in the program from just under two characters to three characters. 
This means that matches of three or fewer characters will no longer be effectively coded 
in index/length tokens and will instead have to be encoded as single characters. Encoding 
data as single characters is actually less efficient than plain text, since it needs an 
additional bit to indicate that a normal character is coming. 

An even more distressing effect is that changing these parameters will drastically increase 
the amount of CPU time needed to perform compression. Under LZ77, just changing the 
text window size from 4K to 64K will result in the average search taking sixteen times 
longer, since every string in the window is compared to the look-ahead buffer. The 
situation is somewhat better under LZSS, since the strings are kept in a binary tree. In this 
case, the runtime cost of the window size is proportional to the logarithm of the window 
size. But this still means over a 30 percent increase in runtime. 

The real penalty comes when the size of the look-ahead buffer is increased. Since our 
string comparisons between the text window phrases and the look-ahead buffer proceed 
sequentially, the runtime here will increase in direct proportion to the length of the look-
ahead buffer. Going from sixteen to 1,024 characters means this portion of the program is 
going to run sixty-four times more slowly—a costly penalty indeed. 

These effects combine to effectively cancel out any gains from increasing either of these 
parameters in an LZ77 algorithm. And even with a 64K text window, we are still 
effectively tied to an algorithm that depends on recency to perform adequate compression. 

Enter LZ78 

To effectively sidestep these problems, Ziv and Lempel developed a different form of 
dictionary-based compression. This algorithm, popularly referred to as LZ78, was 
published in “Compression of Individual Sequences via Variable-Rate Coding” in IEEE 
Transactions on Information Theory (September 1978). 

LZ78 abandons the concept of a text window. Under LZ77 the dictionary of phrases was 
defined by a fixed window of previously seen text. Under LZ78, the dictionary is a 
potentially unlimited list of previously seen phrases. 

LZ78 is similar to LZ77 in some ways. LZ77 outputs a series of tokens. Each token has 
three components: a phrase location, the phrase length, and a character that follows the 
phrase. LZ78 also outputs a series of tokens with essentially the same meanings. Each 
LZ78 token consists of a code that selects a given phrase and a single character that 
follows the phrase. Unlike LZ77, the phrase length is not passed since the decoder knows 
it. 

Unlike LZ77, LZ78 does not have a ready-made window full of text to use as a dictionary. 
It creates a new phrase each time a token is output, and it adds that phrase to the 



dictionary. After the phrase is added, it will be available to the encoder at any time in the 
future, not just for the next few thousand characters. 

LZ78 Details 

When using the LZ78 algorithm, both encoder and the decoder start off with a nearly 
empty dictionary. By definition, the dictionary has a single encoded string—the null 
string. As each character is read in, it is added to the current string. As long as the current 
string matches some phrase in the dictionary, this process continues.  

But eventually the string will no longer have a corresponding phrase in the dictionary. 
This is when LZ78 outputs a token and a character. Remember that the string did have a 
match in the dictionary until the last character was read in. The current string, therefore, 
is defined as that last match with one new character added on. This is what LZ77 outputs: 
the index for the previous match and the character that broke that match. 

But at this point, LZ78 takes an additional step. The new phrase, consisting of the 
dictionary match and the new character; is added to the dictionary. The next time that 
phrase appears, it can be used to build an even longer phrase. 

A code fragment to implement this algorithm is shown next. Some of the detail has been 
glossed over, but this is a fairly faithful representation of the algorithm. 

  for ( ; ; ) { 
   current_match = 1; 
   current_length = 0; 
   memset( test_string, '\0', MAX_STRING ); 
   for ( ; ; ) { 
   test_string[ current_length++ ] = getc( input ); 
   new_match = find_match( test_string ); 
   if ( new_match == -1 ) 
     break; 
   current_match = new_match; 
 } 
  output_code( current_match ); 
  output_char( test_string[ current_length - 1 ] ); 
  add_string_to_dictionary( test_string ); 
  } 

By definition, the empty string will always match string 0, the null node in the dictionary. 
Thus, when we encounter a character for the first time, it is encoded as phrase 0 plus the 
new character. The next time that character appears, it will be encoded as part of a phrase.  

An example of the encoder output follows. The input text is a sequence of words from the 
dictionary of a spelling checker. The LZ78 encoder starts encoding with no phrases in the 
dictionary; therefore, the first character it reads in from the input text, ‘D’, creates a string 
that has no match in the dictionary. The encoders will then output a phrase/character pair, 
in this case 0 and ‘D’. Remember that the dictionary starts up with zero defined as the 
empty phrase. 



Input text: "DAD DADA DADDY DADO..." 

Output Phrase  Output Character  Encoded String  
0  ‘D’  “D”  
0  ‘A’  “A”  
1  ‘ ‘  “D “  
1  ‘A’  “DA”  
4  ‘ ‘  “DA “  
4  ‘D’  “DAD”  
1  ‘Y’  “DY”  
0  ‘ ‘  “ “  
6  ‘O’  “DADO”  

The first two characters to come through the encoder, ‘D’ and ‘A,’ have not been seen 
before. Each will have to be encoded as a phrase, 0+ character pair. “D” is added to the 
dictionary as phrase 1, and “A” is added as phrase 2.  

When the third character, ‘D,’ is read in, it matches an existing dictionary phrase. The ‘ ’ 
character, the next character read in, creates a new phrase with no match in the dictionary. 
LZ78 will output code 1 for the previous match (the D string), then the “ ” character. 

As the encoding continues, the dictionary quickly builds up fairly long phrases. Of course, 
since these entries are from a dictionary sorted in alphabetical order, we probably build 
up phrases much faster than would normally be the case. After just nineteen characters 
have been read in and encoded, the dictionary looks like the one following. 

0  “”  
1  “D”  
2  “A”  
3  “D”  
4  “DA”  
5  “DA”  
6  “DAD”  
7  “DY”  
8  “”  
9  “DADO”  



LZ78 Implementation 

Like LZ77, LZ78 can arbitrarily set the size of the phrase dictionary. And like LZ77, in 
LZ78 we have to worry about the effects of this in two ways. First, we have to consider 
the number of bits allocated in the output token for the phrase code. Second, and more 
importantly, we have to consider how much CPU time managing the dictionary will take.  

In theory, LZ78 should compress better and better as the size of the dictionary increases. 
But this only holds true as the length of the input text tends towards infinity. In practice, 
smaller files will quickly begin to suffer as the code size grows larger. 

The real difficulty with LZ78 actually comes in managing the dictionary. If we use a 
sixteen-bit code for the phrase index, for example, we can accommodate 65,536 phrases, 
including the null code. The phrases can vary tremendously in length, including the 
improbable possibility of 65,536 different versions of a phrase composed of runs of a 
single, repeated character. 

These phrases are conventionally stored in a multiway tree. The tree starts at a root node, 
0, the null string. Each possible character that can be added to the null string is a new 
branch of the tree, with each phrase created that way getting a new node number. 

 
Figure 9.1  An LZ78 Dictionary Tree. 

The dictionary tree shown here would be created after the previous nineteen-character 
phrase was encoded. The major difficulty with managing a tree such as this is the 
potentially large number of branches off of each node. When compressing binary files 
with an eight-bit alphabet, 256 branches off of each node are possible. We could simply 
allocate an array of indices or pointers at each node that was large enough to 
accommodate all 256 possible descendants. But since most nodes will not have that many 
descendants, it would be incredibly wasteful to allocate so much storage. Instead, 



descendant nodes are usually managed as a list of indices no longer than the number of 
descendant nodes that actually exits. This technique makes better use of available 
memory, but it is also significantly slower. It is essentially the same technique used in 
chapter 6 to perform higher-order modeling of data streams.  

With a tree like this, comparing an existing string to the dictionary is simple. It is just a 
matter of walking through the tree, traversing a single node of the tree for every character 
in the phrase. If the phrase terminates at a particular node, we have a match. If there are 
more phrases but we have reached a leaf node, there is not a match. After the symbol has 
been encoded, adding it to the leaf node is also simple—just a matter of adding space to 
the descendant list, then inserting a new descendant node at the node last matched.  

One negative side effect of LZ78 not found in LZ77 is that the decoder has to maintain 
this tree as well. With LZ77, a dictionary index was just a pointer or index to a previous 
position in the data stream. But with LZ78, the index is the number of a node in the 
dictionary tree. The decoder, therefore, has to keep up the tree in exactly the same fashion 
as the encoder, or a disastrous mismatch will occur. 

Another issue ignored so far is that of the dictionary filling up. Regardless of how big the 
dictionary space is, it is going to fill up sooner or later. If we are using a sixteen-bit code, 
the dictionary will fill up after it has 65,535 phrases defined in it. 

There are several alternative choices regarding a full dictionary. Probably the safest 
default choice is to stop adding new phrases to the dictionary after it is full. This only 
requires an extra line or two of code in the add_phrase_to_dictionary() routine. 

But just leaving the dictionary alone may not be the best choice. When compressing large 
streams of data, we may see significant changes in the character of the incoming data. 
When compressing a program’s binary image (such as an EXE file), for example, we 
would expect to see a major shift in the statistical model of the data as we move out of 
the code section of the file and into the data section. 

If we keep using our existing phrase dictionary, we may be stuck with an out-of-date 
dictionary that isn’t compressing very well. At the same time, we have to be careful not 
to throw away a dictionary that is compressing well. 

The UNIX compress program, which uses an LZ78 variant, manages the full dictionary 
problem by monitoring the compression ratio of the file. If the compression ratio ever 
starts to deteriorate, the dictionary is deleted and the program starts over from scratch. 
Otherwise, the existing dictionary continues to be used, though no new phrases are added 
to it. 

An Effective Variant 

As with LZ77, LZ78 was first published in a research journal and discussed in a very 
technical and abstract fashion. It wasn’t until 1984 that a variant of LZ78 made headway 



in the programming world. This was when Terry Welch published “A Technique for 
High-Performance Data Compression” in IEEE Computer. 

Work on the UNIX compress program began almost immediately after Terry Welch’s 
article appeared. The technique Welch described, and the implementation in compress, 
are referred to as LZW compression. 

LZSS improved on LZ77 compression by eliminating the requirement that each token 
output a phrase and a character. LZW makes the same improvement on LZ78. In fact, 
under LZW, the compressor never outputs single characters, only phrases. 

To do this, the major change in LZW is to preload the phrase dictionary with single-
symbol phrases equal to the number of symbols in the alphabet. Thus, there is no symbol 
that cannot be immediately encoded even if it has not already appeared in the input 
stream. 

The LZW compression algorithm in its simplest form follows. A quick examination of 
the algorithm shows that LZW always tries to output codes for strings that are already 
known. And each time a new code is output, a new string is added to the string table. 

  old_string[ 0 ] = getc(input); 
  old_string[ 1 ] = '\0'; 
  while ( !feof( input ) ) { 
    character = getc( input ); 
    strcpy( new_string, old_string ); 
    strncat( new_string, &character, 1 ); 
    if ( in_dictionary( new_string ) ) 
      strcpy( old_string, new_string ); 
    else { 
      code = look_up_dictionary( old_string ); 
      output code( code ); 
      add_to_dictionary( new_string ); 
      old_string[ 0 ] = character; 
      old_string[ 1 ] = '\0'; 
    } 
    code = look_up_dictionary( old string ); 
    output_code( code ); 

A sample string used to demonstrate the algorithm is shown next. The input string is a set 
of English words from a spelling dictionary, separated by the ‘ ’ character. On the first 
pass through the loop, a check is performed to see if the string “ W” is in the table. Since 
it isn’t, the code for “ ” is output, and the string “ W” is added to the table. Since the 
dictionary has codes 0-255 already defined as the 256 possible character values, the first 
string definition is assigned to code 256. After the third letter,‘E’, has been read in, the 
second string code, “WE”, is added to the table, and the code for letter ‘W’ is output. In 
the second word, the characters ‘ ’ and ‘W’ are read in, matching string number 256. 
Code 256 is then output, and a three-character string is added to the string table. The 
process continues until the string is exhausted and all codes have been output.  



Input String: " WED WE WEE WEB WET " 

Characters Input  Code Output  
New code value and associated 
string  

“ W”  ‘ ’  256 = “ W”  
“E”  ‘W’  257 = “WE”  
“D”  ‘E’  258 = “ED”  
“ ”  “D”  259 = “D ”  
“WE”  256  260 = “WE”  
“ ”  ‘E’  261 = “E”  
“WEE”  260  262 = “ WEE”  
“ W”  261  263 = “E W”  
“EB”  257  264 = “WEB”  
“ ”  B  265 = “B”  
“WET”  260  266 = “ WET”  
<EOF>  T   

The sample output for the string is shown with the resulting string table. The string table 
fills up rapidly, since a new string is added each time a code is output. In this highly 
redundant input, five code substitutions were output, along with seven characters. If we 
were using nine-bit codes for output, the nineteen-character input string would be 
reduced to a 13.5-byte output string. Of course, this example was carefully chosen to 
demonstrate code substitution. In real world examples, compression usually doesn’t begin 
until a sizable table has been built, usually after at least one hundred or so bytes have 
been read in.  

Decompression 

The companion algorithm for compression is the decompression algorithm. It takes the 
stream of codes output from the compression algorithm and uses them to recreate the 
exact input stream. One reason for the efficiency of the LZW algorithm is that it does not 
need to pass the dictionary to the decompressor. The table can be built exactly as it was 
during compression, using the input stream as data. This is possible because the 
compression algorithm always outputs the phrase and character components of a code 
before it uses it in the output stream, so the compressed data is not burdened with 
carrying a large dictionary.  

    old_string[ 0 ] = input_bits(); 
    old_string[ 1 ] = '\0'; 
    putc( old_string[ 0 ], output ) 
    while ( ( new_code = input_bits() ) != EOF ) 
       new_string = dictionary_lookup( new_code ); 



       fputs( new_string, output ); 
       append_char_to_string( old_string, new_string[ 0 ] ); 
       add_to_dictionary( old_string ); 
       strcpy( old_string, new_string ); 
    } 

Preceding is a rough C implementation. Like the compression algorithm, it adds a new 
string to the string table each time it reads in a new code. In addition, it translates each 
incoming code into a string and sends it to the output.  

Following is the output of the algorithm given the input created by the earlier 
compression. Note that the string table ends up looking exactly like the table built during 
compression. The output string is identical to the input string from the compression 
algorithm. Note also that the first 256 codes are already defined to translate to single-
character strings, as in the compression code. 

Input Codes: "WED<256>E<260><261><257>B<260>T" 

Input/ 
NEW_CODE  OLD_CODE  

STRING/ 
Output  CHARACTER  New table entry 

‘ ’  ‘ ’  “ ”    

‘W’  ‘ ’  “W”  ‘W’  256 = “ W”  
‘E’  ‘W’  “E”  ‘E’  257 = “WE”  
‘D’  ‘E’  “D”  ‘D’  258 = “ED”  
256  ‘D’  “ W”  ‘ ’  259 = “D”  
‘E’  256  “E”  ‘E’  260 = “ WE”  
260  ‘E’  “ WE”  ‘ ’  261 = “E”  
261  260  “E “  ‘E’  262 = “ WEE”  
257  261  “WE”  ‘W’  263 = “E W”  
‘B’  257  “B”  ‘B’  264 = “WEB”  
260  ‘B’  “ WE”  ‘ ’  265 = “B”  
‘T’  260  “T”  ‘T’  266 = “ WET”  

The Catch 

Unfortunately, the decompression algorithm shown is just a little too simple. A single 
exception in the LZW compression algorithm causes some trouble in decompression. 
Each time the compressor adds a new string to the phrase table, it does so before the 
entire phrase has actually been output to the file. If for some reason the compressor used 
that phrase as its next code, the expansion code would have a problem. It would be 
expected to decode a string that was not yet in its table.  



Unfortunately, there is a way this can occur. If there is a phrase already in the table 
composed of a CHARACTER, STRING pair, and the input stream then sees a sequence 
of CHARACTER, STRING, CHARACTER, STRING, CHARACTER, the compression 
algorithm will output a code before the decompressor defines it. 

A simple example will illustrate the point. Imagine the string IWOMBAT is defined in 
the table as code 300. Later, the sequence IWOMBATIWOMBATI occurs in the table. 
The compression output will look like the following: 

Input String: IWOMBAT.......IWOMBATIWOMBATIXXX 

<Problem section> 

 

Character Input  
New code value and 
associated string  Code Output  

...I    
WOMBATA  300 = IWOMBAT  288 (IWOMBA)  

.  .  .  

.  .  .  
...I  .  .  

WOMBATI  400 = IWOMBATI  300 (IWOMBAT)  
WOMBATIX  401 = IWOMBATIX  400 (IWOMBATI)   

 

When the decompression algorithm sees this input stream, it first decodes code 300 and 
outputs the IWOMBATI string. It will then add the definition for code 399 to the table, 
whatever that may be. It then reads the next input code, 400, and finds that it is not in the 
table.  

Fortunately, this is the only time when the decompression algorithm will encounter an 
undefined code. Since it is the only time, we can add an exception handler to the 
algorithm. The modified algorithm just looks for the special case of an undefined code 
and handles it. In the sample, the decompression routine sees a code of 400. Since 400 is 
undefined the program goes back to the previous code/string, which was “IWOMBAT”, 
or code 300. It then appends the first character of the string to the end of the string, 
yielding “IWOMBATI,” the correct value for code 400. Processing then proceeds as 
normal. 

The exception handler takes advantage of the knowledge that this problem can happen 
only in the special circumstances of CHARACTER+ 
STRING+CHARACTER+STRING+CHARACTER. Given that, any time an unknown 
code occurs, it can determine what the unknown code is given knowledge of the previous 
string from the input.  



   old_string[ 0 ] = input_bits(); 
   old_string[ 1 ] = '\0'; 
   putc( old_string[ 0 ], output ) 
   while ( ( new_code = input_bits() ) != EOF ) { 
     new_string = dictionary_lookup( new_code ); 
     if ( new_string == NULL ) { 
       strcpy( new_string, old_string ); 
       append_character_to_string( new_string, new_string[ 0 ] ); 
     } 
     fputs( new_string, output ); 
     append_character_to_string( old_string, new_string[ 0 ] ); 
     add_to_dictionary( old_string ); 
     strcpy( old_string, new_string ); 
 } 

LZW Implementation 

The concepts in the compression algorithm are so simple that the whole algorithm can be 
expressed in a dozen lines. Implementation of this algorithm is somewhat more 
complicated, mainly due to management of the dictionary. A short example program that 
uses twelve-bit codes is in LZW12.C, and it will illustrate some of the techniques used 
here.  

Tree Maintenance and Navigation 

As in the LZ78 algorithm, the LZW dictionary is maintained as a multiway tree. But in 
the case of LZW, the way the data is stored doesn’t look much like a tree. A little analysis, 
however will reveal a multiway tree hidden behind the dictionary data structures.  

   struct dictionary { 
    int code_value; 
    int parent_code; 
    char character; 
   } dict[ TABLE_SIZE ]; 

The structure shown in the preceding figure holds the entire dictionary tree. Each element 
in the data structure represents a single node. The node is defined by three items: (1) 
Code_value. This number is the actual code for the string that terminates at this node and 
is what the compression program emits when it wants to encode the string; (2) 
Parent_code. Under LZ78-style compression, every string in the dictionary has a parent 
string one character shorter than it. This integer is the code for that parent string; (3) 
Character. This is the character for this particular node. If the string encoded by the 
parent of a node were “GREENLEA,” and the character value was “F,” this node would 
encode “GREENLEAF.”  

Something that immediately becomes noticeable as a problem here is that each dictionary 
node does not have a pointer or pointers to its child nodes. As we navigate the tree, how 
are we supposed to find the children of each node if there are no pointers to children? 



The answer is that this tree maintains the dictionary pointers through a hashed array of 
nodes. To find the child of a particular node, we apply a hashing function to see where 
that puts us in the list. The hashing function used in LZW12.C is shown next. 

unsigned int find_child_node( parent_code, child_character ) 
int parent_code; 
int child_character; 
{ 
 int index; 
 int offset; 
 
 index = ( child_character << ( BITS - 8 ) ) ^ parent_code; 
  if ( index == 0 ) 
   offset = 1; 
  else 
   offset = TABLE_SIZE - index; 
  for ( ; ; ) { 
   if ( dict[ index ].code_value == UNUSED ) 
     return( index ); 
   if ( dict[ index ].parent_code == parent_code && 
        dict[ index ].character == (char) child_character ) 
   return( index ); 
   index -= offset; 
   if ( index < 0 ) 
     index += TABLE_SIZE; 
  } 
} 

This hashing function is essentially the same one used in the UNIX compress program. It 
combines the numeric values of the parent_code and the child_character to form a 
sixteen-bit offset into the list of nodes. After finding the target node, it checks for 
collisions, since that node may be in use by some other element in the tree. Eventually, 
one of two things happens. Either this function finds a node already defined as belonging 
to the parent and child, or it finds an empty node that can be used that way.  

This hashing function performs fairly well. The collision avoidance mechanism depends 
on having TABLE_SIZE be a prime number, and performance depends on it being at 
least 20 percent larger than two raised to the BITS power. In LZW12.C, TABLE_SIZE 
needs to be larger than 4,096. The number actually used was 5,021. 

With the hashing function in place, we can now effectively navigate down through the 
tree. The data structures used to maintain the dictionary during compression don’t help us 
move up the tree, but during compression we don’t need to move up the tree, only down. 

During decompression, the hashing function is no longer used. Instead, each node in the 
tree has its parent code and character value stored at the array offset defined by its own 
code. This allows for quick lookup of dictionary values, which lets us move up the tree 
quickly. We need to move up the tree during decompression to determine the entire 
contents of a string, and this different storage method makes this possible. We never need 
to move down the tree during decompression, so the hashing function is no longer needed. 



One additional feature of the dictionary tree used in LZW12.C needs explanation. The 
first 256 nodes are considered “special” nodes by the program. Each of them represents 
the one character string that corresponds with its node value. In other words, code 65 will 
always represent the character “A,” and it will automatically be assumed not to have a 
parent. These nodes are all predefined when the program is first initialized. 

Compression 

Armed just with the hashing function and the data structure, the compression program 
can be written fairly easily. The program goes through a short initialization phase, then 
sits in an encoding loop reading characters in and sending codes out. Finally, it does a 
small amount of cleanup work, then exits.  

next_code = FIRST CODE; 
for ( i = 0 ; i < TABLE_SIZE ; i++ ) 
  dict[ i ].code_value = UNUSED; 
if ( ( string_code = getc( input ) ) == EOF ) 
  string_code = END_OF_STREAM; 
while ( ( character = getc( input ) ) != EOF ) { 
  index = find_child_node( string_code, character ); 
  if ( dict[ index ].code_value != - 1) 
    string_code = dict[ index ].code_value; 
  else { 
    if ( next_code <= MAX_CODE ) { 
      dict[ index ].code_value = next_code++; 
      dict[ index ].parent-code = string_code; 
      dict[ index ].character = (char) character; 
    } 
    OutputBits( output, string_code, BITS ); 
    string_code = character; 
  } 
} 
OutputBits( output, string_code, BITS ); 
OutputBits( output, END_OF_STREAM, BITS ); 

This routine first initializes the dictionary array. It does this by marking all nodes in the 
tree as unused. Remember that the first 256 nodes are special and will be considered used 
automatically.  

The next_code variable is then set to the first available code. This program uses code 256 
as an end-of-file marker, so the first code defined will have a value of 257. As new 
strings are read in and defined, this number grows until it reaches the maximum code 
value of 4,095.  

Finally, the first character is read in and assigned to the loop variable string_code. We 
can arbitrarily assign the first character to a code value, since it is a special single-
character string. 

After initialization, the main encoding loop begins. The working variable, string_code, 
keeps track of which code matches the characters read in so far. When the program first 



starts, that is just as single-character string, but as the dictionary grows, string_code can 
represent very long strings. 

A single character is read in from the input file, then find_child_node() is called to see if 
the current string_code has a child node that corresponds to that character. If it does, the 
child’s code is assigned to string_code, and we move back to the top of the loop. 

If there is no child node, we have reached the end of our string match. When this occurs, 
we output the current code, then start over with a new string_code. Finally, we add the 
new string created by the combination of string_code and character to the dictionary so 
the next time it occurs we will get a match. 

The main loop repeats until an end-of-file is read in. When this occurs, we output the 
string_code built up so far. Finally, the END_OF_STREAM code is output, which tells 
the decoder when we are at the end of the data stream. 

Decompression 

As mentioned previously, maintaining the dictionary is simpler during decompression. 
We don’t ever have to navigate down through the tree. Instead, we read in codes straight 
from the encoded stream, then work our way up through the tree. As long as the parent 
nodes are properly defined in the data structure, everything works fine.  

The only problem with working up through the tree is that the decoded characters are 
gathered in reverse order, so they have to be pushed into a stack, popped off in reverse 
order, and written to the output file. This is done with the decode_string routine, shown 
next. 

decode_string() follows the parent pointers up though the dictionary until it finds a code 
less than 256, which we have defined as the first character in the string. A count of 
characters in the decode stack is then returned to the calling program. 

    unsigned int decode_string( count, code ) 
    unsigned int count; 
    unsigned int code; 
    { 
       while ( code > 255 ) { 
        decode_stack[ count++ } = dict[ code ].character; 
        code = dict[ code].parent_code; 
    } 
    decode_stack[ count++ ] = (char) code; 
    return( count ); 
   } 

Once the decode routine is in place, the decompression routine falls into order fairly 
easily. The routine has a few lines of initialization code, followed by a main decoding 
loop.  



The initialization section of the decompression routine in LZW12.C sets up the 
next_code variable. This let it track the code value of each string as it is added to the 
table. Next, is reads in the first code and copies it to the output file. Once that is done, it 
can enter the main decoding loop. 

   next_code = FIRST_CODE; 
   old_code = InputBits( input, BITS ); 
   if ( old_code == END_OF STREAM ) 
    return; 
   character = old_code; 
   putc( old_code, output ); 
   while ( ( new_code = InputBits( input, BITS ) ) != END_OF_STREAM ) { 
    if ( new_code >= next_code ) { 
     decode_stack[ 0 ] = (char) character; 
     count = decode_string( 1, old_code ); 
    } 
    else 
     count = decode_string( 0, new_code ); 
    character = decode_stack[ count - 1 ]; 
    while ( count > 0 ) 
     putc( decode_stack[ --count ], output ); 
    if ( next_code <= MAX_CODE ) { 
      dict[ next_code ].parent_code = old_code; 
      dict[ next_code ].character = (char) character; 
    next_code++; 
   } 
   old_code = new_code; 
 } 

Normally, decoding is a simple matter. The loop reads in a code value, looks up the string, 
and outputs it. Then it create a new string by adding the old_code and the first character 
of the current string to the string table. It then goes back to the top of the loop and starts 
over.  

But an additional complication is created when the CHARACTER+ 
STRING+CHARACTER+STRING+CHARACTER sequence shows up. This creates a 
code larger than the largest currently defined code. Fortunately, we know what to do in 
this case. Our new string will be the same as our last string, defined by old_code, with a 
copy of its first character appended to its end. This is handled by preinitializing the 
decoding_stack with a single character, then decoding the old_code string into the stack 
with an offset of one instead of zero. 

The Code 

The source code for a complete twelve-bit version of LZW compression and 
decompression follows.  

/************************* Start of LZW12.C ************************** 
* 
* This is 12 bit LZW program, which is discussed in the first part 
* of the chapter. It uses a fixed size code, and does not attempt 



* to flush the dictionary after it fills up. 
*/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include "errand.h" 
#include "bitio.h" 
 
/* 
* Constants used throughout the program. BITS defines how many bits 
* will be in a code. TABLE_SIZE defines the size of the dictionary 
* table. 
*/ 
#define BITS                    12 
#define MAX_CODE                ( ( 1 << BITS ) - 1 ) 
#define TABLE_SIZE              5021 
#define END_OF_STREAM           256 
#define FIRST_CODE              257 
#define UNUSED                  -1 
/* 
* Local prototypes. 
*/ 
#ifdef __STDC__ 
unsigned int find_child_node( int parent_code, int child_character ); 
unsigned int decode_string( unsigned int offset, unsigned int code ); 
#else 
unsigned int find_child_node (); 
unsigned int decode_string (); 
#endif 
 
char *CompressionName = "LZW 12 Bit Encoder"; 
char *Usage  = "in-file out-file\n\n"; 
 
/* 
* This data structure defines the dictionary. Each entry in the 
* dictionary has a code value. This is the code emitted by the 
* compressor. Each code is actually made up of two piece: a 
* parent_code, and a character. Code values of less than 256 are 
* actually plain text codes. 
*/ 
 
struct dictionary { 
 int code_value; 
 int parent_code; 
 char character; 
} dict[TABLE_SIZE ]; 
 
char decode_stack[ TABLE_SIZE }; 
 
/* 
* The compressor is short and simple. It reads in new symbols one 
* at a time from the input file. It then checks to see if the 
* combination of the current symbol and the current code are already 
* defined in the dictionary. If they are not, they are added to the 
* dictionary, and we start over with a new one symbol code. If they 
* are, the code for the combination of the code and character becomes 
* our new code. 



*/ 
 
void CompressFile( input, output, argc, argv ) 
FILE *input; 
BIT_FILE *output; 
int argc; 
char *argv[]; 
{ 
  int next_code; 
  int character; 
  int string_code; 
  unsigned int index; 
  unsigned int i; 
 
  next_code = FIRST_CODE; 
  for ( i = 0 ; i < TABLE_SIZE ; i++ ) 
   dict[ i ].code_value = UNUSED; 
  if ( ( string_code = getc( input ) )== EOF ) 
   string_code = END_OF_STREAM; 
  while ( ( character = getc( input ) ) != EOF ) { 
   index = find_child_node( string_code, character ); 
   if ( dict[ index ].code_value != - 1) 
    string_code = dict[ index ].code_value; 
   else { 
    if ( next_code <= MAX_CODE ) { 
    dict[ index ].code_value = next_code++; 
    dict[ index ].parent_code = string_code; 
    dict[ index ].character = (char) character; 
   } 
   OutputBits( output, (unsigned long) string_code, BITS ); 
   string_code = character; 
  } 
 } 
 OutputBits( output, (unsigned long) string_code, BITS ); 
 OutputBits( output, (unsigned long) END_OF_STREAM, BITS ); 
 while ( argc-- > 0 ) 
  printf( "Unknown argument: %s\n", *argv++ ); } 
 
/* 
* The file expander operates much like the encoder. It has to 
* read in codes, then convert the codes to a string of characters. 
* The only catch in the whole operation occurs when the encoder 
* encounters a CHAR+STRING+CHAR+STRING+CHAR sequence. When this 
* occurs, the encoder outputs a code that is not presently defined 
* in the table. This is handled as an exception. 
*/ 
void ExpandFile( input, output, argc, argv ) 
BIT_FILE *input; 
FILE *output; 
int argc; 
char *argv[]; 
{ 
  unsigned int next_code; 
  unsigned int new_code; 
  unsigned int old_code; 
  int character; 
  unsigned int count; 



 
  next_code = FIRST_CODE; 
  old_code = (unsigned int) InputBits( input, BITS ); 
  if ( old_code == END_OF_STREAM ) 
   return; 
  character = old_code; 
  putc( old_code, output ); 
while ( ( new_code = (unsigned int) InputBits( input, BITS ) ) 
          != END_OF_STREAM ) { 
/* 
** This code checks for the CHARACTER+STRING+CHARACTER+STRING+CHARACTER 
** case which generates an undefined code. It handles it by decoding 
** the last code, and adding a single character to the end of the 
** decode string. 
*/ 
  if (new_code >= next_code ) { 
   decode_stack[ 0 ] = (char) character; 
   count = decode_string( 1, old_code ); 
  } 
  else 
   count  = decode_string( 0, new_code ); 
  character = decode_string[ count - 1 ]; 
  while ( count > 0 ) 
   putc( decode_stack[ --count ], output ); 
  if ( next_code <= MAX_CODE ) { 
   dict[ next_code ].parent_code = old_code; 
   dict[ next_code ].character = (char) character; 
   next_code++; 
  } 
  old_code = new_code; 
  } 
  while ( argc-- > 0 ) 
  print( "Unknown argument: %s\n", *argv++ ); 
} 
 
/* 
* This hashing routine is responsible for finding the table location 
* for a string/character combination. The table index is created 
* by using an exclusive OR combination of the prefix and character. 
* This code also has to check for collisions, and handles them by 
* jumping around in the table. 
 
*/ 
unsigned int find_child_node( parent_code, child_character ) 
int parent_code; 
int child_character; 
{ 
 int index; 
 int offset; 
  
 index = ( child_character << ( BITS - 8 ) ) ^ parent_code; 
 if ( index == 0 ) 
  offset = 1; 
 else 
  offset = TABLE_SIZE - index; 
 for ( ; ; ) { 
  if ( dict[ index ].code_value == UNUSED ) 



   return( index ); 
  if ( dict[ index ].parent_code == parent_code && 
   dict[ index ].character == (char) child_character ) 
   return( index ); 
  index -= offset; 
  if ( index < 0 ) 
   index += TABLE_SIZE; 
 } 
} 
/* 
* This routine decodes a string from the dictionary, and stores it 
* in the decode_stack data structure. It returns a count to the 
* calling program of how many characters were placed in the stack. 
*/ 
 
unsigned int decode_string( count, code ) 
unsigned int count; 
unsigned int code; 
{ 
 while ( code > 255 ) { 
  decode_stack[ count++ ] = dict[ code ].character; 
  code = dict[ code ].parent_code; 
  } 
  decode_stack[ count++ ] = (char) code; 
  return( count ); 
} 
 
/*************************** End of LZW12.C **************************/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Chapter 10 
Speech Compression  
Manipulation of sound by computers is a relatively new development. It has been 
possible since the birth of digital computers, but only in the last five years or so has 
inexpensive hardware brought this to the average user’s desktop. Now the ability to play 
digitized sound is expected to be an integral part of the “multimedia revolution.”  

The use of multimedia focuses the issue of data compression for most users. Computer 
graphics in particular quickly take up all available disk space. Digitized audio is far less 
voracious in its storage requirements, but even so it can quickly swallow up all free space 
on the average user’s hard disk. 

Fortunately for computer users, the world of telephony has used digitized audio since the 
1960s, and extensive research has been done on effective methods of encoding and 
compressing audio data. The world’s telecommunications companies were intensely 
aware of the cost of transmission bandwidth and made efforts to reduce expenses in this 
area. Computer users today benefit from much of this research. 

This chapter looks first at some of the basic concepts involved in using digital audio, 
including the software and hardware in today’s generation of computers. Next, it looks at 
how well conventional lossless compression techniques work on digitized voice. Finally, 
it explores some lossy techniques. 

Digital Audio Concepts 

For modern computers to manipulate sound, they first have to convert it to a digital 
format. The sound samples can then be processed, transmitted, and converted back to 
analog format, where they can finally be received by the human ear.  

Digitization of sound began in earnest in the early 1960s. Like much of our early 
computer technology, credit for development lies with AT&T, which at that time had a 
regulated monopoly on long-distance service in the United States. In 1962, AT&T 
established the first commercial digital telephone link, a T1 interoffice trunk in Chicago. 

In the short space of thirty years, we have seen the long-distance network in the United 
States convert almost entirely from analog to digital transmission. Virtually all new 
switching equipment installed by telephone companies today is digital. But analog 
switching is still found in older installations and in the smaller PBX and key systems 
installed in businesses. Of course, the final subscriber loop between the telephone 
company and the end user is still persistently analog. 



Digital audio is now coming of age in the highly visible consumer electronics arena as 
well. The digital compact disk has nearly completed its displacement of analog LP 
records. It remains to be seen whether digital audio tape will do the same thing to analog 
cassette tape, but it seems likely that some day most recorded music will be distributed in 
digital format. 

Fundamentals 

While this book cannot give a complete course in digital signal processing, it certainly 
has room to cover a few basic concepts involved in digital sound. Figure 10.1 shows a 
typical audio waveform as it might be displayed on an oscilloscope. The X axis in this 
diagram represents time. The Y axis represents a voltage measured at an input device, 
typically a microphone. The microphone attempts to faithfully reproduce changes in air 
pressure caused by sound waves traveling through it.  

Some human ears can hear sounds at frequencies as high as 20,000Hz and nearly as low 
as DC. The dynamic range of our hearing is so wide that we have to employ a logarithmic 
scale of measurement, the decibel, to reasonably accommodate it. This presents a unique 
set of requirements for digitization. 

A waveform like the shown in Figure 10.1 is typical of audio sample. It isn’t a nice, clean 
sine wave that has a regular period and can be described as a simple mathematical 
function. Instead, it is a combination of various frequencies at different amplitudes and 
phases. When combined, we see something that looks fairly irregular and not easy to 
characterize. 

 
Figure 10.1  A typical audio waveform. 

This particular “snapshot” shows about 5 milliseconds (ms) of output. Notice that the 
largest recognizable components of the waveform appear to have a period of roughly two 
milliseconds. This corresponds to a frequency of about 500Hz, a fairly characteristic 
frequency found in speech or music.  



The first step in working with digital audio is “sampling.” Sampling consists of taking 
measurements of the input signal at regular times, converting them to an appropriate scale, 
and storing them. Figure 10.2 shows the same waveform sampled at an 8KHz rate. This 
means that 8,000 times per second a measurement is taken of the voltage level of the 
input signal. The measurement points are marked with an “x” on the waveform. 

 
Figure 10.2  A typical audio waveform being sampled at 8KHz. 

In most computer systems, this first step of digitization is done with an analog-to-digital 
converter (ADC). The ADC takes a given voltage and scales it to an appropriate digital 
measurement. An eight-bit ADC, for example, might have a “full scale” input voltage of 
500 millivolts (mv)—it would output an eight-bit value of 255 if the input voltage were 
500mv and zero if the input voltage were zero. A voltage between these values would be 
scaled to fit in the linear range of zero to 255.  

Since audio signals are AC in natured, the ranges are usually adjusted so that a zero 
voltage signal falls in the middle of the range. For the previous example, the range would 
be adjusted to between -250mv and +250mv. Outputs from the eight-bit ADC would 
range from -128 to +127. 

The stored sample points then represent a series of voltages that were measured at the 
input of the ADC. Figure 10.3 shows the representation of those voltages overlaid with 
the input AC signal. Note that since the sample points in this case are occurring many 
times more frequently than the period of the waveform, the digital samples themselves 
trace the analog signal very accurately. 

 

 

 

 



 

 
Figure 10.3  Sample voltages overlaid with the input AC signal 

Now that the sound has been digitized, it can be stored via computer using any number of 
technologies, ranging from fast storage, such as main processor RAM, to off-line slow 
storage on magnetic tape. The actual speed of the storage medium is relatively 
unimportant with digital sound, since the bandwidth needed to accurately store the sound 
is relatively slow compared to most digital media.  

Eventually, the sound needs to be played back. This is done via another electronic 
component that is the converse of the ADC: the digital-to-analog converter (DAC). The 
DAC is responsible for taking a digital value and converting it to a corresponding analog 
signal. To be effective, the conversion process needs to be the mirror image of that 
performed when converting the analog signal to digital. While the exact voltages 
produced at the output of the DAC do not need to be identical to those seen at the input, 
they do need to be proportional to one another so that one waveform corresponds to the 
other. In addition, the samples need to be output at exactly the same rate that they were 
read in. Any deviation here will cause the output frequencies to be shifted up or down 
from the input, generally not a good thing.  

Figure 10.4 shows the output of the DAC when given the same set of samples produced 
in Figure 10.2. At first glance, it seems that this is a radically different waveform. All the 
nice, smooth shapes shown in the earlier figures are gone, replaced by this stair-step, 
rectangular, artificial-looking creation. 

 

 

 

 



 
Figure 10.4  DAC output 

Fortunately, Figure 10.4 is not that far removed from Figure 10.1. Mathematically, the 
sharp jumps that occur when we move from sample to sample represent high-frequency 
components in the output signal. These can (and must) be eliminated from the signal by 
means of a low-pass filter that lies between the output of the DAC and the final 
amplification stage of the audio output.  

A low-pass filter is a network of electrical components designed to let frequencies below 
a certain value pass through it unhindered, while attenuating frequencies above that point. 
An ideal low-pass filter used with the samples shown here would completely stop any 
frequency above 4KHz and let frequencies below 4KHz pass through with no attenuation. 

In practice, low-pass filters don’t work perfectly, but even a low-budget filter can take 
Figure 10.4 and create a nearly indistinguishable copy of Figure 10.1. Without the filter, 
the sound sample will still be intelligible, but it will be filled with distracting high-
frequency “noise” that is part of the reproduction process. 

Figure 10.5 shows the same figure when the sampling rate has been stepped up to a much 
higher rate. This increase in sampling rate clearly does a more accurate job of 
reproducing the signal. The next section discusses how variations in these parameters 
affect the output signal. 

 

 

 

 

 

 



 

 
Figure 10.5  Sampling at a much higher rate. 

Sampling Variables 

When an audio waveform is sampled, two important variables affect the quality of the 
reproduction: the sample rate and the sample resolution. Both are important factors, but 
they play different roles in determining the level of distortion produced when a sample is 
played back.  

The sample resolution is simply a measure of how accurately the digital sample can 
measure the voltage it is recording. When the input range is -500mv to +500mv, for 
example, an eight-bit ADC can resolve the input signal down to about 4mv. So an input 
signal of 2mv will either get rounded up to 4mv or down to 0mv. This is called a 
quantization error. 

Figure 10.6 shows the results of quantization error when sampling a waveform. In some 
cases the sample point has a larger magnitude than the audio signal, but in other places it 
has less. When the digitized signal is played back through a DAC, the output waveform 
will closely track the sample points, resulting in a certain amount of distortion. 

 

 

 

 

 

 



 

 
Figure 10.6  Quantization error when sampling a waveform 

It might seem that eight bits should be enough to accurately record audio data, but this 
may not be the case because of the large dynamic range of audio the human ear can 
detect. If our 500mv range example were used, we might find that our input signal 
magnitudes range from 1mv to 500mv in a single recording session. The crash of drums 
in an orchestra could push the ADC to its limits, while a delicate violin solo may never 
go outside 5mv. If the minimum digital resolution is only 5mv, a very noticeable level of 
distortion will be introduced during this part of a recording session.  

The sampling rate plays a different role in determining the quality of digital sound 
reproduction. One classic law in digital signal processing was published by Harry 
Nyquist in 1993. He determined that to accurately reproduce a signal of frequency f, the 
sampling rate has to be greater than 2*f. This is commonly called the Nyquist Rate. 

The audio signal in Figure 10.7 is being measured at a considerably slower rate than that 
shown in the previous examples, with noticeably negative consequences. At several 
places in the waveform it is not even sampled a single time during an excursion above or 
below the center line. 

 

 

 

 

 

 



 
Figure 10.7  A slower sampling rate. 

Figure 10.8 shows the waveform we could expect after playing back the digitized 
samples stored from Figure 10.7. Clearly, after the digitized output is filtered, the 
resulting waveform differs quite a bit from that shown in the previous figure. What has 
happened is that the high-frequency components of the waveform have been lost by the 
slower sampling rate, letting only the low-frequency parts of the sample through.  

 
Figure 10.8  The waveform after playing back digitized samples. 

The human ear hears sound up to 20KHz, which implies that we need to sample audio to 
40KHz or better to achieve good reproduction. In fact, the sampling rate used for digital 
reproduction of music via compact disk or digital audio tape is 44KHz, using sixteen-bit 
samples. The quality of sound achieved at this sampling rate is generally acknowledged 
to be superior.  

This does not mean that all digital recordings have to be done at 44KHz rates. Virtually 
every digital phone system in the world uses an 8KHz sampling rate to record human 
speech, with generally good results. This means that the phone system is unable to pass 
any signal with a frequency of 4KHz or higher. This clearly does not render the system 
useless—millions of long-distance calls over digital lines are made every day. The 



average speech signal is composed of many different frequencies, and even if everything 
above 4KHz is discarded, most of the speech energy still makes it through the system. 
Our ears detect this loss as a lower-fidelity signal, but they still understand it quite well. 

The ultimate test of all this is how the audio output sounds to our ears. It is difficult to 
quantify a “quality of sound” measurement is strictly mathematical terms, so when 
discussing audio output, it is always best to temper judgments with true listener trials. 

PC-Based Sound 

Some exotic work in digital signal processing has been going on for years, but it usually 
involved expensive special-purpose peripherals far out of reach of the average computer 
installation.  

Early desktop computers did not really push the state of the art in sound reproduction. 
Original IBM and Apple computers both had built-in speakers as standard equipment, but 
they gave the programmer only a single bit with which to control the speaker. This meant 
the speaker could generally be used only to emit beeps and buzzes, not true digitized 
sound. 

In the early 1980s, however, many computer manufacturers saw that a true digitized 
sound capability could be added to their computers at a relatively low cost. Apple was the 
most prominent manufacturer, adding an eight-bit DAC to the Macintosh, which opened 
the door to the use of true digitized audio. 

Most desktop computers today are IBM compatible ISA computers based on Intel’s 
80x86 CPU chips. Unfortunately for sound enthusiasts, IBM has not yet elected to add 
sound capability to the PC, but third-party solutions are relatively inexpensive. The sound 
samples used in this book have been created and manipulated using the Sound Blaster 
card, manufactured by Creative Labs. But several other cards are on the market that can 
play digitized sound samples, and any of these can be used, provided file-format 
conversion utilities exist. 

The next generation of digitized sound on the desktop is now here. Many of today’s 
consumer machines can digitize and playback 44 KHz sixteen-bit CD-quality sound data. 
Only a few years ago, this capability seemed a bit unusual. The exotic black cube from 
NeXT Computer seemed to presage the future when it was first introduced, incorporating 
a digital signal-processor (DSP) chip as a co-processor; the intent was to offload work, 
such as manipulating digitized audio, from the main CPU. For a while, other 
manufacturers followed this design, for example, Apple with its AV line of Macintosh 
computers. Today, the vast majority of PC-compatible machines sold in retail consumer 
outlets come equipped with sound cards and CD-ROM drives—by one count, over 75%. 
More recently, it seems that the pendulum may shift back in the other direction, as a new 
largesse of processing power in the CPU will allow its deployment for audio and video 
processing, in addition to handling its regular duties. Intel is promulgating such a 
configuration with its new P6 processor, which has cycles to spare, that can be used for 



compressing and decompressing audio and video on the fly, even while crunching 
numbers in a spreadsheet. Regardless of how it’s done, the multimedia capabilities of 
today’s machines only highlight the need for data compression, since they fill up a hard 
disk faster than ever before. The explosive growth of the Internet and the World-Wide 
Web, which allows multimedia-enriched distributed documents, also increases the need 
for compression, because the bandwidth of communications links is not increasing as fast 
as the processing power of the host computers. 

The files distributed with this book will be “raw” sound files. These will be pure binary 
recordings of eight-bit input data. Virtually all sound software on desktop machines today 
expects more than that for a sound file, but many software packages have utilities to 
convert raw sound files to a particular format. The Sound Blaster, for example, includes 
an executable program called VOC-HDR.EXE that prepends a header file to a raw sound 
file. The sound samples here were all sampled at 11KHz, a commonly used rate for 
medium-fidelity digital recording. 

By supplying sound data only, the code here can concentrate on compression, without 
worries about additional superfluous data in the file. A full-fledged sound-file 
compression package by necessity needs to support the dozens of different file formats in 
existence, but that mostly consists of implementation details. 

Some sound capability resources are available for a relatively small investment. Many 
on-line services, such as Compuserve, America Online, GEnie, and BIX, have active 
forums for audio manipulation. There are also active forums on the Internet, such as Web 
sites and Usenet newsgroups, focusing on digital audio. Freeware and shareware utility 
programs available in these forums do a passable job of playing sound out of the PC 
speaker. Other programs convert sound files between various formats. It wouldn’t be 
feasible to try to list specific examples here, but it should be relatively simple to find this 
type of software. In addition, third-party sound cards are available for a relatively low 
investment. 

Lossless Compression of Sound 

The original applications for sound compression could not take advantage of lossless 
data-compression techniques. One characteristic of all the compression techniques 
discussed so far in this book is that the amount of compression they achieve on a given 
data set is not known in advance. In some cases, the compression program can actually 
cause the data to expand, taking up more space than it occupied before.  

In the 1960s, telecommunications researchers were trying to find ways to put more 
conversions on digital trunk lines, particularly on “expensive” lines, such as undersea 
cables or satellite links. Unlike disk space, which is somewhat flexible, these links have a 
fixed total bandwidth. A single telephone conversion might be allocated a 64Kbps slot on 
one of these channels. If it suddenly needed 100Kbps because the compression code hit a 
rough spot, there would be a major problem. 



These early researchers were attempting to divide a 64Kbps channel into two 32Kbps 
channels to get two for the price of one. This required compression techniques that would 
consistently compress data by 50 percent, even if it meant losing some resolution. 

Today, when trying to compress sound on disk for multimedia applications, we are in a 
slightly better position. We store and retrieve data from fixed disks, a more flexible 
medium for our work. If our files are compressed by 95 percent in some cases, and -10 
percent in others, it will not really cause any trouble. 

Problems and Results 

How much can we compress voice files using conventional lossless techniques? To 
answer this question, a set of six short sound files were created, ranging in length from 
about one second to about seven seconds. To determine how compressible these files 
were, they were packed into an archive using ARJ 2.10, a shareware compression 
program that generally compresses as well or better than any other general-purpose 
program.  

ARJ results showed that voice files did in fact compress relatively well. The six sample 
raw sound files gave the following results: 

Filename  Original  Compressed  Ratio  
SAMPLE-1.RAW  50777  33036  35%  
SAMPLE-2.RAW  12033  8796  27%  
SAMPLE-3.RAW  73091  59527  19%  
SAMPLE-4.RAW  23702  9418  60%  
SAMPLE-5.RAW  27411  19037  30%  
SAMPLE-6.RAW  15913  12771  20%  

These compression results look relatively promising. All the files were compressible to 
some extent, and some were reduced to less than half their original size. This level of 
compression is undoubtedly useful and may well be enough for some applications.  

ARJ.EXE performs two sorts of compression on an input data stream. First, it does an 
LZSS type of windowed string matching on the string. The output from LZSS is, of 
course, a stream of tokens referring to either individual characters or matched strings. 
ARJ, like LHArc, takes LZSS a step further by performing Huffman compression on the 
output stream. Compressing these sound files using just LZSS compression and simple 
order-0 Huffman coding might tell us a little bit about what kind of redundancy is in 
these voice files. 



To check the results, the files were compressed again with the LZSS program from 
Chapter 8 and the HUFF program from chapter 3. The results of these experiments are 
shown in the following table. 

Filename  ARJ Ratio  LZSS Ratio  HUFF Ratio  
SAMPLE-1.RAW  35%  23%  26%  
SAMPLE-2.RAW  27%  5%  30%  
SAMPLE-3.RAW  19%  3%  17%  
SAMPLE-4.RAW  60%  25%  27%  
SAMPLE-5.RAW  30%  15%  32%  
SAMPLE-6.RAW  20%  2%  18%  

The table shows that in every case, we perform more compression with simple order-0 
Huffman coding than we do LZSS dictionary compression. Since LZSS is normally a 
much more powerful compression technique, this is a telling result.  

What LZSS takes advantage of when compressing is repeated strings of characters in the 
file. Order-0 Huffman coding just takes advantage of overall frequency differences for 
individual sequences. What we see in these sounds files is some overall frequency 
difference between the various codes that make up the files, but not as many repeated 
strings as we might normally expect. 

A look at snapshots of these sound files reveals some of the character of the data we are 
trying to compress. Figure 10.9 shows a section of about 600 sample points from 
SAMPLE-3.RAW. In this case, the sound samples are only taking up about 30 percent of 
the possible range allocated for them by the hardware. While individual samples can 
range from +127 to -128, in this snapshot they run only from about +30 to -30. 

By only using a portion of the available bandwidth, a sound file automatically makes 
itself a good candidate for Huffman compression. The sample shown in Figure 10.9 can 
probably be compressed by about 30 percent by just squeezing the samples down from 
eight bits to six or so bits. This is, in effect, what the Huffman coder does. 

 

 

 

 

 



 
Figure 10.9  Sample points from SAMPLE-3.RAW. 

Looking for repeated sequences in a sample such as this is less fruitful. We can certainly 
see a pattern in the waveform, but it is somewhat irregular, and it is not likely to produce 
many repeated patterns of even length 2. If we keep sampling long enough, random 
chance dictates that repeated strings will recur, but the compression will be much less 
than in a data or program file.  

Figure 10.10 shows a sound sample that is a much more difficult candidate for 
compression. Unlike Figure 10.9, this sound sample utilizes nearly the entire dynamic 
range of the ADC, so an order-0 Huffman encoder will be much less effective. Likewise, 
the chances of finding repeated patterns with an LZSS algorithm diminish considerably 
here. This is the type of file that gives us only a few percentage points of compression. 

 
Figure 10.10  A sound sample that is difficult to compress. 

Of course, even when looking at a “busy” sample like this, the human eye picks out 
patterns. The peaks and valleys of the waveform occur at somewhat regular intervals, 
telling us that sinusoidal waveforms are present in the signal. Unfortunately, our existing 
compression algorithms aren’t equipped to find this type of redundancy in an input 
waveform. To do better, we need to move to a new frontier: lossy compression.  



Lossy Compression 

The very word “lossy” implies that when using this type of compression we are going to 
give up a certain amount of precision. This would certainly not be acceptable when 
compressing the data or text files we use on our computers. We could probably compress 
the M&T Books annual financial statement if we rounded all figures off to the nearest 
million dollars, for example, but the accounting department would definitely have a 
problem working with the books after that.  

By digitizing sound samples, however, we have in effect given up quite a bit of precision. 
For example, our sound samples used in this chapter were all recorded at 11KHz. This 
means that we have thrown away the entire portion of every sample greater than 5.5KHz 
in frequency. We are also using only eight-bit samples, so we are introducing a 
significant amount of distortion in the form quantization error. 

All these factors are taken into account when designing the hardware and software for 
digitization. Instead of trying to perfectly reproduce analog phenomena, we instead make 
compromises that give us reproduction that is satisfactory for our purposes. 

Likewise, when we look at lossy compression, we once again accept a certain loss in 
fidelity. The signal we get after going through a compression/expansion cycle will not be 
identical to the original, but we can adjust the parameters to get better or worse fidelity, 
and likewise better or worse compression. 

Lossy compression is not necessarily an end to itself. We frequently use lossy 
compression in a two-phase process: a lossy stage followed by a lossless stage. One nice 
thing about lossy compression is that it frequently smooths out the data, which makes it 
even more suitable for lossless compression. So we get an extra unexpected benefit from 
lossy compression, above and beyond the compression itself.  

Silence Compression 

Silence compression on sound files is the equivalent of run-length encoding on normal 
data files. In this case, however, the runs we encode are sequences of relative silence in a 
sound file. This is a lossy technique because we replace the sequences of relative silence 
with absolute silence.  

Figure 10.11 shows a typical sound sample that has a long sequence of silence. The first 
two thirds of it is composed of silence. Note that though we call it “silence,” there are 
actually very small “blips” in the waveform. These are normal background noise and can 
be considered inconsequential. 

 

 



 
Figure 10.11  A typical sound sample with a long sequence of silence. 

A compression program for a sample like this needs to work with a few parameters. First, 
it needs a threshold value for what can be considered silence. With our eight-bit samples, 
for example, 80H is considered “pure” silence. We might want to consider any sample 
value within a range of plus or minus three from 80H to be silence.  

Second, it needs a way to encode a run of silence. The sample program that follows 
creates a special SILENCE_CODE with a value of FF used to encode silence. The 
SILENCE_CODE is followed by a single byte that indicates how many consecutive 
silence codes there are. 

Third, it needs a parameter that gives a threshold for recognizing the start of a run of 
silence. We wouldn’t want to start encoding silence after seeing just a single byte of 
silence. It doesn’t even become economical until three bytes of silence are seen. We may 
want to experiment with even higher values than three to see how it affects the fidelity of 
the recording. 

Finally, we need another parameter that indicates how many consecutive non-silence 
codes need to be seen in the input stream before we declare the silence run to be over. 
Setting this parameter to a value greater than one filters out anomalous spikes in the input 
data. This can also cut back on noise in the recording. 

The code to implement this silence compression follows. It incorporates a starting 
threshold of four and a stop threshold of two, so we have to see four consecutive silence 
codes before we consider a run started. 

SILENCE.C by definition spends a lot of time looking ahead at upcoming input data. For 
example, to see if a silence run has really started the program must look at the next 
upcoming four input values. To simplify this, the program keeps a look-ahead buffer full 
of input data. It never directly examines the upcoming data read in via getc(). Instead, it 
looks at the bytes read into the buffer. This makes it easy to write functions to determine 
if a silence run has been started or if one is now over. 

/************************ Start of SILENCE.C ************************ 



* 
* This is the silence compression coding module used in chapter 10. 
* Compile with BITIO.C, ERRHAND.C, and either MAIN-C.C or MAIN-E.C 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <ctype.h> 
#include "bitio.h" 
#include "errhand.h" 
#include "main.h" 
 
/* 
* These two strings are used by MAIN-C.C and MAIN-E.C to print 
* messages of importance to the user of the program. 
*/ 
char *CompressionName = "Silence compression"; 
char *Usage = "infile outfile\n"; 
 
/* 
* These macros define the parameters used to compress the silent 
* sequences. SILENCE_LIMIT is the maximum size of a signal that can 
* be considered silent, in terms of offset from the center point. 
* START_THRESHOLD gives the number of consecutive silent codes that 
* have to be seen before a run is started. STOP_THRESHOLD tells how 
* many non-silent codes need to be seen before a run is considered 
* to be over. SILENCE_CODE is the special code output to the 
* compressed file to indicate that a run has been detected. 
* SILENCE_CODE is always followed by a single byte indicating how 
* many consecutive silence bytes are to follow. 
*/ 
 
#define SILENCE_LIMIT   4 
#define START_THRESHOL  5 
#define STOP_THRESHOL   2 
#define SILENCE_CODE    Oxff 
#define IS_SILENCE( c ) ( (c) >( 0x7f - SILENCE_LIMIT ) && \ 
                        (c) < ( 0x80 + SILENCE_LIMIT ) ) 
 
/* 
* BUFFER_SIZE is the size of the look-ahead buffer. BUFFER_MASK is 
* the mask applied to a buffer index when performing index math. 
*/ 
#defined BUFFER_SIZE 8 
#defined BUFFER_MASK 7 
 
/* 
* Local function prototypes. 
*/ 
 
#ifdef __STDC__ 
 
int silence_run( int buffer [], int index ) 
int end_of_silence( int buffer[], int index) 
 
#else 



 
int silence_run(); 
int end_of_silence(); 
 
#endif 
 
/* 
* The compression routine has the hard job here. It has to detect 
* when a silence run has started and when it is over. It does this 
* by keeping up-and-coming bytes in a look-ahead buffer. The buffer 
* and the current index are passed ahead to routines that check to 
* see if a run has started or if it has ended. 
*/ 
 
void CompressFile( input, output, argc, argv ) 
FILE *input; 
BIT_FILE *output; 
 
int argc; 
char *argv[]; 
{ 
  int look_ahead[ BUFFER_SIZE ]; 
  int index; 
  int i; 
  int run_length; 
 
  for ( i = 0 ; i < BUFFER_SIZE ; i++ ) 
   look_ahead[ i ] = getc( input ); 
  index = 0; 
  for ( ; ; ) { 
   if ( look_ahead[ index ] == EOF ) 
    break; 
/* 
* If run has started, I handle it here. I sit in the do loop until 
* the run is complete, loading new characters all the while. 
*/ 
   if ( silence_run( look_ahead, index ) ) { 
    run_length = 0; 
    do { 
     look_ahead[ index ++ ] = getc( input ); 
     index &= BUFFER_MASK; 
     if ( ++run_length == 255 ) { 
      putc( SILENCE_CODE, output->file ); 
      putc( 255, output->file ); 
      run_length = 0; 
   } 
  } while ( !end_of_silence( look_ahead, index ) ); 
  if ( run_length > 0 ) { 
   putc( SILENCE_CODE, output->file ); 
   putc( run_length, output->file ); 
  } 
 } 
/* 
* Eventually, any run of silence is over, and I output some plain codes. 
* Any code that accidentally matches the silence code gets silently 
* changed. 
*/ 



   if ( look_ahead[ index ]== SILENCE_CODE ) 
    look_ahead[ index ]--; 
   putc( look_ahead[ index ], output->file ); 
   look_ahead[ index++ ] = getc( input ); 
   index & = BUFFER_MASK; 
  } 
  while ( argc-- > 0 ) 
   printf( "Unused argument: %s\n", *argv++ ); 
} 
 
/* 
* The expansion routine used here has a very easy time of it. It just 
* has to check for the run code, and when it finds it, pad out the 
* output file with some silence bytes. 
*/ 
void ExpandFile( input, output, argc, argv ) 
BIT_FILE *input; 
FILE *output; 
int argc; 
char argv[]; 
{ 
  int c; 
  int run_count; 
 
  while ( ( c = getc( input->file ) ) != EOF ) { 
   if ( c == SILENCE_CODE ) { 
    run_count = getc( input->file ); 
    while ( run_count-- > 0 ) 
     putc( 0x80, output ); 
   } else 
    putc( c, output ); 
  } 
  while ( argc-- > 0 ) 
   printf( "Unused argument: %s\n", *argv++ ); 
} 
 
/* 
* This support routine checks to see if the look-ahead buffer 
* contains the start of a run, which by definition is 
* START_THRESHOLD consecutive silence characters. 
*/ 
 
int silence_run( buffer, index ) 
int buffer[]; 
int index; 
{ 
  int i; 
 
  for ( i = 0 ; i < START_THRESHOLD ; i++ ) 
   if ( !IS_SILENCE( buffer[ ( index + i ) & BUFFER_MASK ] ) ) 
    return( 0 ); 
  return( 1 ); 
} 
 
/* 
* This support routine is called while we are in the middle of a 
* run of silence. It checks to see if we have reached the end of 



* the run. By definition this occurs when we see STOP_THRESHOLD 
* consecutive non-silence characters. 
*/ 
 
int end_of silence( buffer, index ) 
int buffer[]; 
int index; 
{ 
  int i; 
 
  for ( i = 0 ; i < STOP_THRESHOLD ; i++ ) 
   if ( IS_SILENCE( buffer[ ( index + i ) & BUFFER_MASK ] ) ) 
    return( 0 ); 
  return( 1 ); 
} 
/************************ End of SILENCE.C ************************/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 11 
Lossy Graphics Compression  
Desktop computers communicate information primarily via their screens, so graphics are 
a major concern for computer programmers and designers. Programmers spend enormous 
amounts of time and effort trying to accommodate the proliferation of the Graphical User 



Interface (GUI). Millions of man hours and billions of dollars worth of equipment are 
being allocated just to make improvements in the way programs display data.  

The money being spent on computers equipped to perform properly under GUIs such as 
Microsoft Windows or Motif has created a vast array of computers capable of displaying 
complex graphical images, with resolution approaching that of conventional media, such 
as television or magazines. In turn, this capability has spawned new software designed to 
exploit these capabilities. 

Programs using complex graphics are showing up in virtually every area of computing 
applications: games, education, desktop publishing, and graphical design, just to mention 
a few. These programs have one factor in common. The images they use consume 
prodigious amounts of disk storage. 

In the IBM world, for example, the VGA display is probably the current lowest common 
denominator for high-quality color graphics. The VGA can display 256 simultaneous 
colors selected from a palette of 262,144 colors. This lets the VGA display continuous 
tone images, such as color photographs, with a reasonable amount of fidelity. 

The problem with using images of photographic quality is the amount of storage required 
to use them in a program. For the previously mentioned VGA, a 256-color screen image 
has 200 rows of 320 pixels, each consuming a single byte of storage. This means that a 
single screen image consumes a minimum of 64K! It isn’t hard to imagine applications 
that would require literally hundreds of these images to be accessed. An on-line catalog 
for a retail sales outlet, for example, could easily have 1,000 images stored for immediate 
access. The problem is that 1,000 images of this quality would consume 64MB of storage. 
And this is not an unreasonable number: We are just beginning to see game programs 
being distributed on CD-ROM, due to the enormous amounts of storage required by 
screen images. 

This chapter discusses the use of lossy compression techniques to achieve very high 
levels of data compression of continuous tone graphical images, such as digitized images 
of photographs. 

Enter Compression 

There has been an explosion of research into graphics storage during the last decade, and 
many interesting results have been published. In the late 1970s and early 1980s, most 
graphics compression concentrated on using conventional lossless techniques. Popular 
PC file formats now use techniques discussed earlier in the book to achieve savings 
ranging from 10 to 90 percent on graphics images. Well-known formats using 
compression include the PCX, GIF, and BMP standards.  

As the use of stored graphical images increased, file formats such as PCX began to 
appear inadequate. Cutting file sizes in half certainly is a worthwhile thing to do, but 
developers and users Ywere filling their storage space up so fast that system requirements 



for multimedia systems appeared prohibitively expensive. Worse yet, the promise of full 
motion video on the desktop was simply not possible until some method was developed 
for radically reducing storage needs. Clearly, compression capabilities needed to improve, 
perhaps by orders of magnitude. 

Statistical and Dictionary Compression Methods 

Conventional programs and data on computers respond well to compression based on 
exploiting statistical variations in the frequency of both individual symbols and strings of 
symbols or phrases. Dictionary-based systems are in fact just statistical programs in 
disguise. Unfortunately, these types of compression don’t tend to do very well on 
continuous tone images.  

The primary problem these programs have stems from the fact that pixels in photographic 
images tend to be well spread out over their entire range. If the colors in an image are 
plotted as a histogram based on frequency, the histogram is not as “spiky” as we would 
like for statistical compression to succeed. In fact, over the long run, histograms for live 
images from sources such as television tend to be flat. This means that each pixel code 
has approximately the same chance of appearing as any other, negating any opportunity 
for exploiting entropy differences. 

Dictionary-based compression programs run into similar problems. Images based on 
scanned photographs just don’t have the right kind of data characteristics to create 
multiple occurrences of the same phrase. In a rasterized image, for example, a vertical 
structure such as the side of a house may give similar strings in many consecutive rows of 
a picture. Unfortunately, because of the vagaries of the real world, the same feature in 
each row will tend to be slightly different from the one before. Out of a string of twenty 
pixels, one or two will vary by a single step from the scans before and after. And while 
these differences are small enough that they are either undetectable or meaningless to the 
human eye, they throw a monkey wrench into the works of dictionary-based compression. 
Strings have to match exactly for this compression method to work. Because of minute 
variations, the length of matching strings tends to be small, which limits the effectiveness 
of compression. 

Lossy Compression 

Just like audio data (discussed in Chapter 10), graphical images have an advantage over 
conventional computer data files: They can be slightly modified during the 
compression/expansion cycle without affecting the perceived quality on the part of the 
user. Minor changes in the exact shade of a pixel here and there can easily go completely 
unnoticed if the modifications are done carefully. Since the graphical images on a 
computer are generally scanned from real-world sources, they usually represent an 
already imperfect representation of a photograph or some other printed media. A lossy 
compression program that doesn’t change the basic nature of the image ought to be 
feasible.  



Given that lossy compression for graphical images is possible, how is it implemented? 
Researchers initially tried some of the same techniques that worked on speech, such as 
differential coding and adaptive coding. While these techniques helped compress 
graphics, they did not do as well as hoped. One reason for this lies in the fundamental 
difference between audio and video data. 

Audio data sampled using conventional formats tends to be very repetitive. Sounds, 
including speech, are made of sine waves that repeat for seconds at a time. Though the 
input stream at the DAC on a computer may consist of dozens of different frequencies 
added together, sine waves generally combine to produce repetitive waveforms. 

The repetitive nature of audio data naturally lends itself to compression. Techniques such 
as linear predictive coding and adaptive differential pulse code modulation take 
advantage of this fact to compress audio streams anywhere from 50 to 95 percent. 

When research began on compression of graphics, attempts were made to apply similar 
techniques to digitized images, with some success. Initially, researchers worked on the 
compression of streams of rasterized data, such as would be displayed on a television set. 

When graphics data is rasterized, it is displayed as a sequential stream of pixels. One row 
at time is displayed on a screen, working from left to right, then top to bottom. Thus, a 
thin slice of the picture is painted as each row is completed, until the complete screen is 
filled. When digitized, pixels can range in size from a single bit to as many as twenty-
four bits. Desktop graphics today frequently uses eight bits to define a single pixel. 

Differential Modulation 

Differential modulation depends on the notion that analog data tends to vary in “smooth” 
patterns, with radical jumps in the magnitude of a signal being the exception, not the rule. 
In audio data, this is true as long as the sampling rate of the signal is somewhat higher 
than its maximum frequency component.  

Differential modulation of an audio signal takes advantage of this fact by encoding each 
sample as the difference from its predecessor. If audio samples are eight bits each, for 
example, a differential encoding system might encode the difference between samples in 
four bits, compressing the input data by 50 percent. The lossy part of the compression 
scheme arises from the fact that an exact difference can’t always be encoded using the 
standard differential method. The signal may be rising faster than the encoding permits, 
or the encoding may be too coarse to accommodate a small difference. The lossy aspect 
of differential encoding can be managed well enough to produce a good signal. 

Differential modulation has more of a problem when compressing graphical data. For one 
thing, pixels in a graphical image can’t be reliably depended on to vary upward or 
downward in smooth increments. Sharp dividing lines between different components of 
an image are the rule. This means that a system that relies on differential encoding needs 
to accommodate both small and large differences between samples, limiting its 



effectiveness. Many images will feature long stretches of data where pixels have little or 
no difference between one another, and these will compress well; however, others will 
feature many abrupt changes, and these may not compress at all. 

In general, differential encoding of graphical images doesn’t seem to produce 
compression that is significantly greater than that of the best lossless algorithms. It 
certainly doesn’t yield the order of magnitude of improvement in compression that is 
needed. 

Adaptive Coding 

Adaptive coding (which is often used with differential coding) relies on predicting some 
information about upcoming pixels based on previously seen pixels. If the last ten pixels 
in a grey-scale photograph all had values between forty-five and fifty, for example, an 
adaptive compression system might predict with high probability that the next pixel 
would be in the same range. An entropy-based encoding scheme, such as Huffman or 
arithmetic coding, could then assign probabilities to various incoming codes. An 
alternative would be to use a companding scale, with the finest granularity assigned to the 
range nearest the predicted guess. Assuming that the prediction method enabled you to 
make an educated guess about the probabilities of the pixels, you should achieve some 
data compression.  

Most adaptive schemes rely on using just a few of the surrounding pixels as part of the 
calculation for probabilities of the upcoming pixel. In Figure 11.1, the pixel to be 
encoded is shown at position 0,0. Pixels that are most commonly used when calculating 
probabilities are shown at positions A, B, C, and D. Predictions about the upcoming value 
of the target pixel can be made based on any of several predicting equations: 

 
Figure 11.1  Pixels used for adaptive coding. 

 

 

 



 
Figure 11.2  Pixel predictors. 

These techniques use previous data to calculate the most likely value of the target pixel, 
and they adjust the coding scheme accordingly. While these calculations produce good 
results, once again they are certainly not the order of magnitude needed to perform 
effective compression.  

A Standard That Works: JPEG 

In the late 1970s and early 1980s, research began on new types of image compression 
that promised to greatly outperform the more conventional compression techniques 
discussed earlier. By the late 1980s, this work was beginning to find commercial 
applications for image processing on desktop systems, mostly in the form of add-on 
coprocessor cards for UNIX and Macintosh workstations. These cards were able to 
perform lossy compression on images at ratios of as much as 95 percent without visible 
degradation of the image quality.  

Other forces at this time combined to start development of an international standard that 
would encompass these new varieties of compression. There are clear advantages to all 
parties if standards allowed for easy interchange of graphical formats. The main concern 
regarding early standardization is the possibility that it would constrain further innovation. 
The two standardization groups involved, the CCITT and the ISO, worked actively to get 
input from both industry and academic groups concerned with image compression, and 
they seem to have avoided the potentially negative consequences of their actions. 

The standards group created by these two organizations is the Joint Photographic Experts 
Group (JPEG). The JPEG standard was developed over the curse of several years, and is 
now firmly entrenched as the leading format for lossy graphics compression. 

The JPEG specification consists of several parts, including a specification for both 
lossless and lossy encoding. The lossless compression uses the predictive/adaptive model 
described earlier in this chapter, with a Huffman code output stage, which produces good 
compression of images without the loss of any resolution. 

The most interesting part of the JPEG specification is its work on a lossy compression 
technique. The rest of this chapter discusses the basics of this technique, with sample 
code to illustrate its components. 



JPEG Compression 

The JPEG lossy compression algorithm operates in three successive stages, shown in 
Figure 11.3.  

 
Figure 11.3  JPEG lossy compression. 

These three steps combine to form a powerful compressor, capable of compressing 
continuous tone images to less than 10 percent of their original size, while losing little, if 
any, of their original fidelity.  

The Discrete Cosine Transform 

The key to the compression process discussed here is a mathematical transformation 
known as the Discrete Cosine Transform (DCT). The DCT is in a class of mathematical 
operations that includes the well-known Fast Fourier Transform (FFT), as well as many 
others. The basic operation performed by these transforms is to take a signal and 
transform it from one type of representation to another.  

This transformation is done frequently when analyzing digital audio samples using the 
FFT. When we collect a set of sample points from an incoming audio signal, we end up 
with the representation of a signal in the time domain. That is, we have a collection of 
points that show what the voltage level was for the input signal at each point in time. The 
FFT transforms the set of sample points into a set of frequency values that describes 
exactly the same signal. 

Figure 11.4 shows the classic time domain representation of an analog signal. This 
particular signal is composed of three different sine waves added together to form a 
single, slightly more complicated waveform. Each of the sample points represents the 
relative voltage or amplitude of the signal at a specific point in time. 

 

 

 

 

 

 



 
Figure 11.4  The classic time domain representation of an analog signal. 

Figure 11.5 shows what happens to the same set of data points after FFT processing. In 
the time-domain representation of the signal, each of the points on the X axis represents a 
different point in time, and each of the points on the Y axis represents a specific 
magnitude of the signal. After processing the data points with an FFT, the X axis no 
longer has the same meaning. Now, each point on the X axis represents a specific 
frequency, and the Y axis represents the magnitude of that frequency.  

 
Figure 11.5  Data points after FFT processing. 

Given that interpretation of the output of the FFT, Figure 11.5 makes immediate sense. It 
says that the signal displayed in the earlier figure can also be represented as the sum of 
three different frequencies of what appears to be identical magnitude. Given this 
information, it should be just as easy to construct the signal as it would be with Figure 
11.4.  

Another important point to make about the this type of transformation function is that the 
function is reversible. In principle, the same set of points shown in Figure 11.5 can be 
processed through an inverse FFT function, and the points shown in Figure 11.4 should 
result. The two transformation cycles are essentially lossless, except for loss of precision 
resulting from rounding and truncation errors. 



The DCT is closely related to the Fourier Transform, and produces a similar result. It 
takes a set of points from the spatial domain and transforms them into an identical 
representation in the frequency domain; however, we are going to introduce an additional 
complication in this particular instance. Instead of a two-dimensional signal plotted on an 
X and Y axis, the DCT will operate on a three-dimensional signal plotted on an X, Y, and 
Z axis. 

In this case, the “signal” is a graphical image. The X and Y axes are the two dimensions 
of the screen. The amplitude of the “signal” in this case is simply the value of a pixel at a 
particular point on the screen. For the examples used in this chapter, that is an eight-bit 
value used to represent a grey-scale value. So a graphical image displayed on the screen 
can be thought of as a complex three-dimensional signal, with the value on the Z axis 
denoted by the color on the screen at a given point. This is the spatial representation of 
the signal. 

The DCT can be used to convert spatial information into “frequency” or “spectral” 
information, with the X and Y axes representing frequencies of the signal in two different 
dimensions. And like the FFT, there is an Inverse DCT (IDCT) function that can convert 
the spectral representation of the signal back to a spatial one. 

DCT Specifics 

The actual formula for the two-dimensional DCT is shown in Figure 11.6, with its partner, 
the IDCT, shown immediately below in Figure 11.7. The DCT is performed on an N x N 
square matrix of pixel values, and it yields an N x N square matrix of frequency 
coefficients. The formula looks somewhat intimidating at first glance, but it can be done 
with a relatively straightforward piece of code.  

 
Figure 11.6  The Discrete Cosine Transform 

 
Figure 11.7  The Inverse DCT 

To write code to implement this function, it first becomes clear that simple table lookups 
can replace many terms of the equation. The two cosine terms that have to be multiplied 



together only need to be calculated once at the beginning for the program, and they can 
be stored for later use. Likewise, the C(x) terms that fall outside the summation loops can 
also be replaced with table lookups. Once that is done, code to compute the N-by-N 
portion of a display looks somewhat like that shown below:  

  for ( i = 0 ; i < N ; i++ ) 
   for ( j = 0 ; j < N ; j++ ) { 
    temp = 0.0; 
    for ( x = 0 ; x < N ; x++ ) 
     for ( y = 0 ; y < N ; y++ ) { 
      temp += Cosines[ x ][ i ] * 
          Cosines[ y ][ j ] * 
          pixel[ x ][ y ]; 
     } 
    temp *= sqrt( 2 * N ) * Coefficients[ i ][ h ]; 
    DCT[ i ][ j ] = INT_ROUND( temp ); 
   } 

Why Bother? 

While this code fragment looks as though it may be somewhat interesting to a 
mathematician, why anyone would want to use it on a graphical image is not immediately 
obvious. After we transform the pixels to frequency coefficients, we still have just as 
many points as before. It doesn’t seem as if that is a particularly good way to go about 
compressing data. It would be much more impressive if the DCT took an N-by-N matrix 
of data and transformed it to an N/2 by N/2 matrix.  

However, Figure 11.5 provides a clue as to what the JPEG committee sees in this 
algorithm. Figure 11.5 shows that the spectral representation of the audio waveform takes 
all the information needed to describe the waveform and packs it into the three non-zero 
points on the graph. So in principle we could describe the 512 points that make up the 
input waveform with just three points of frequency data. 

The DCT accomplishes something similar when it transforms data. In the N-by-N matrix, 
all the elements in row 0 have a frequency component of zero in one direction of the 
signal. All the elements in column 0 have a frequency component of zero in the other 
direction. As the rows and columns move away from origin, the coefficients in the 
transformed DCT matrix begin to represent higher frequencies, with the highest 
frequencies found at position N-1 of the matrix. 

This is significant because most graphical images on our computer screens are composed 
of low-frequency information. As it turns out, the components found in row and column 0 
(the DC components) carry more useful information about the image than the higher-
frequency components. As we move farther away from the DC components in the picture, 
we find that the coefficients not only tend to have lower values, but they become far less 
important for describing the picture. 

So the DCT transformation identifies pieces of information in the signal that can be 
effectively “thrown away” without seriously compromising the quality of the image. It is 



hard to imagine how we would do this with a picture that hadn’t been transformed. With 
the image still described in spatial terms, using pixels, a program would have a difficult 
time figuring out which pixels are important to the overall look of the picture and which 
aren’t. 

After defining the DCT as the transformation to be used, the JPEG committee then 
tackled the truly difficult work: how to “throw away” the insignificant portions of the 
picture. Details on that come later in this chapter. 

Implementing the DCT 

One of the first things that shows up when examining the DCT algorithm is that the 
calculation time required for each element in the DCT is heavily dependent on the size of 
the matrix. Since a doubly nested loop is used, the number of calculations is O(N 
squared): as N goes up, the amount of time required to process each element in the DCT 
output array will go up dramatically.  

One of the consequences of this is that it is virtually impossible to perform a DCT on an 
entire image. The amount of calculation needed to perform a DCT transformation on 
even a 256-by-256 grey-scale block is prohibitively large. To get around this, DCT 
implementations typically break the image down into smaller, more manageable blocks. 
The JPEG group selected an 8-by-8 block for the size of their DCT calculation. 

While increasing the size of the DCT block would probably give better compression, it 
doesn’t take long to reach a point of diminishing returns. Research shows that the 
connections between pixels tend to diminish quickly, such that pixels even fifteen or 
twenty positions away are of very little use as predictors. This means that a DCT block of 
64-by-64 might not compress much better than if we broke it down into four 16-by-16 
blocks. And to make matters worse, the computation time would be much longer. 

While there is probably a good argument for using 16-by-16 blocks as the basis for DCT 
computations, the JPEG committee elected to stick with 8-by-8. Much of this was 
motivated by a desire to allow for practical implementations that could be built using 
today’s technology. This type of compression is referred to as “block coding.” 

Matrix Multiplication 

The definition of the DCT shown above is a relatively straightforward, doubly nested 
loop. The inner element of the loop gets executed N*N times for every DCT element that 
is calculated. The inner line of the loop has two multiplication operations and a single 
addition operation.  

A considerably more efficient form of the DCT can be calculated using matrix operations. 
To perform this operation, we first create an N-by-N matrix known as the Cosine 
Transform matrix, C. This matrix is defined by the equation shown in Figure 11.8. 



 
Figure 11.8  The Cosine Tranform Matrix. 

Once the Cosine Transform matrix has been built, we transpose it by rotating it around 
the main diagonal. This matrix is referred to in code as Ct, the Transposed Cosine 
Transform matrix. Building this matrix is done only once during program initialization. 
Both matrices can be built at the same time with a relatively short loop, shown below:  

 for ( j = 0 ; j < N ; j++ ) { 
    C[ 0 ][ j ] = 1.0 / sqrt( N ); 
    Ct[ j ][ 0 ] = C[ 0 ][ j ]; 
 } 
 for ( i = 1 ; i < N ; i++ ) { 
   for ( j = 0; j < N ; j ++ ) { 
      C[ i ][ j ] = sqrt( 2.0 / N ) * 
             cos( ( 2 * j + 1 ) * i * pi 
              / ( 2.0 * N ) ); 
      Ct[ j ][ i ] = C[ i ][ j ]; 
   } 
 } 

Once these two matrices have been built, we can take advantage of the alternative 
definition of the DCT function:  

DCT = C * Pixels * Ct 

In this particular equation, the ‘*’ operator refers to matrix multiplication, not normal 
arithmetic multiplication. Each factor in the equation is an N-by-N matrix. In the case of 
the JPEG algorithm and the program used to illustrate this chapter, the matrices are 8 by 
8.  

When multiplying two square matrices together, the arithmetic cost of each element of 
the output matrix will be N multiplication operations and N addition operations. Since we 
perform two matrix multiplications to create the DCT matrix, each element in the 
transformed DCT matrix was created at the cost of 2N multiplications and additions, a 
considerable improvement over the nested loop definition of the DCT used earlier. 

/* MatrixMultiply( temp, input, Ct ); */ 
  for ( i = 0 ; i < N ; i++ ) { 
   for ( j = 0 ; j < N ; j++ ) { 
    temp[ i ][ j ] = 0.0; 
    for ( k = 0 ; k < N ; k++ ) 
     temp[ i ][ j ] += ( pixel[ i ][ k ] ) * Ct[ k ][ j ]; 
   } 



  } 
 
/* MatrixMultiply( output, C, temp ); */ 
 
  for ( i = 0 ; i < N ; i++ ) { 
   for ( j = 0 ; j < N ; j++ ) { 
    temp1 = 0.0; 
    for ( k = 0 ; k < N ; k++ ) 
     temp1 += C[ i ][ k ] * temp[ k ][ j ]; 
    DCT[ i ][ j ] = temp1; 
   } 
  } 

A sample piece of code that implements the DCT via matrix arithmetic is shown above. 
Note that the code is essentially nothing more than a set of two triply nested loops. The 
first set of loops multiplies the transposed Cosine Transform Matrix by the input set of 
pixels, creating a temporary matrix. The temporary matrix is then multiplied by the 
Cosine Transform matrix, which results in the output, the DCT matrix.  

Continued Improvements 

The versions of the DCT presented here perform the same operations as those used in 
commercial implementations, but without several more optimization steps needed to 
produce JPEG compressors that operate in something approaching real time.  

One improvement that can be made to the algorithm is to develop versions of the 
algorithm that only use integer arithmetic. To achieve the accuracy needed for faithful 
reproduction, the versions to the program tested in this chapter all stick with reliable 
floating point math. It is possible, however, to develop versions of the DCT that use 
scaled integer math, which is considerably faster on most platforms. 

Since the DCT is related to the Discrete Fourier Transform, it shouldn’t be surprising that 
many of the techniques used to speed up the family of Fourier Transforms can also be 
applied to the DCT. In fact, people all over the world are working full time on applying 
Digital Signal Processing techniques to the DCT. Every cycle shaved off the time taken 
to perform the transform can be worth a small fortune, so there is good incentive for these 
research efforts. 

Output of the DCT 

Figure 11.9 shows a representative input block from a grey-scale image. As can be seen, 
the input consists of an 8-by-8 matrix of pixel values which are somewhat randomly 
spread around the 140 to 175 range. These integer values are fed to the DCT algorithm, 
creating the output matrix shown below it.  

 
 



 
Figure 11.9  The DCT on a Block of Pixels from CHEETAH.GS 

The output matrix shows the spectral compression characteristic the DCT is supposed to 
create. The “DC coefficient” is at position 0,0 in the upper left-hand corner of the matrix. 
This value represents an average of the overall magnitude of the input matrix, since it 
represents the DC component in both the X and the Y axis. Note that the DC coefficient 
is almost an order of magnitude greater than any of the other values in the DCT matrix. In 
addition, there is a general trend in the DCT matrix. As the elements move farther and 
farther from the DC coefficient, they tend to become lower and lower in magnitude.  

This means that by performing the DCT on the input data, we have concentrated the 
representation of the image in the upper left coefficients of the output matrix, with the 
lower right coefficients of the DCT matrix containing less useful information. The next 
section discusses how this can help compress data. 

Quantization 

Figure 11.3 shows the JPEG compression process as a three-step procedure, the first step 
being a DCT transformation. DCT is a lossless transformation that doesn’t actually 
perform compression. It prepares for the “lossy,” or quantization, stage of the process.  

The DCT output matrix takes more space to store than the original matrix of pixels. The 
input to the DCT function consists of eight-bit pixel values, but the values that come out 
can range from a low of -1,024 to a high of 1,023, occupying eleven bits. Something 
drastic needs to happen before the DCT matrix can take up less space. 



The “drastic” action used to reduce the number of bits required for storage of the DCT 
matrix is referred to as “Quantization.” Quantization is simply the process of reducing the 
number of bits needed to store an integer value by reducing the precision of the integer. 
Once a DCT image has been compressed, we can generally reduce the precision of the 
coefficients more and more as we move away from the DC coefficient at the origin. The 
farther away are from 0,0, the less the element contributes to the graphical image, so the 
less we care about maintaining rigorous precision in its value. 

The JPEG algorithm implements Quantization using a Quantization matrix. For every 
element position in the DCT matrix, a corresponding value in the quantization matrix 
gives a quantum value. The quantum value indicates what the step size is going to be for 
that element in the compressed rendition of the picture, with values ranging from one to 
255. 

The elements that matter most to the picture will be encoded with a small step size, size 1 
offering the most precision. Values can become higher as we move away from the origin. 
The actual formula for quantization is quite simple: 

                         DCT(i,j) 
Quantized Value(i,j) = -------------- Rounded to nearest integer 
                       Quantum(i,j) 

From the formula, it becomes clear that quantization values above twenty-five or perhaps 
fifty assure that virtually all higher-frequency components will be rounded down to zero. 
Only if the high-frequency coefficients get up to unusually large values will they be 
encoded as non-zero values.  

During decoding, the dequantization formula operates in reverse: 

DCT(i,j) = Quantized Value(i,j) * Quantum(i,j) 

Once again, from this we can see that when you use large quantum values, you run the 
risk of generating large errors in the DCT output during dequantization. Fortunately, 
errors generated in the high-frequency components during dequantization normally don’t 
have a serious effect on picture quality.  

Selecting a Quantization Matrix 

Clearly an enormous number of schemes could be used to define values in the 
quantization matrix. At least two experimental approaches can test different quantization 
schemes. One measures the mathematical error found between an input and output image 
after it has been decompressed, trying to determine an acceptable level of error. A second 
approach tries to judge the effect of decompression on the human eye, which may not 
always correspond exactly with mathematical differences in error levels.  

Since the quantization matrix can obviously be defined a runtime when compression 
takes place, JPEG allows for the use of any quantization matrix; however, the ISO has 



developed a standard set of quantization values supplied for use by implementers of 
JPEG code. These tables are based on extensive testing by members of the JPEG 
committee, and they provide a good baseline for established levels of compression. 

One nice feature about selecting quantization matrices at runtime is that it is quite simple 
to “dial in” a picture quality value when compressing graphics using the JPEG algorithm. 
By choosing extraordinarily high step sizes for most DCT coefficients, we get excellent 
compression ratios and poor picture quality. By choosing cautiously low step sizes, 
compression ratios will begin to slip to not so impressive levels, but picture quality 
should be excellent. This allows for a great deal of flexibility for the user of JPEG code, 
choosing picture quality based on both imaging requirements and storage capacity. 

The quantization tables used in the test code supplied with this program are created using 
a very simple algorithm. To determine the value of the quantum step sizes, the user inputs 
a single “quality factor” which should range from one to about twenty-five. Values larger 
than twenty-five would work, but picture quality has degraded far enough at quality level 
25 to make going any farther an exercise in futility. 

 for ( i = 0 ; i < N ; i++ ) 
   for ( j = 0 ; j < N ; j++ ) 
     Quantum[ i ][ j ] = 1 + ( ( 1 + i + j ) * quality ); 

The quality level sets the difference between adjoining bands of the same quantization 
level. These bands are oriented on diagonal lines across the matrix, so quantization levels 
of the same value are all roughly the same distance from the origin. An example of what 
the quantization matrix looks like with a quality factor of two follows:  

 
Figure 11.10  The matrix at quality factor 2. 

As a result of this configuration, the DCT coefficient at 7,7 would have to reach a value 
of sixteen to be encoded as a value other than zero. This sets the threshold for the value 
of an element before it is going to contribute any meaningful information to the picture. 
Any contribution under the value of this threshold is simply thrown out. This is the exact 
point in the algorithm where the “lossy” effect takes place. The first DCT step is lossless 
except for minor mathematical precision loss. And the step following quantization is a 
lossless encoding step. So this is the only place where we get a chance to actually discard 
data.  



Figure 11.11 shows the effects of quantization on a DCT matrix. The quantization matrix 
shown in the previous figure was applied to this block of DCT, which comes from the 
first block of test file CHEETAH.GS. The quantization/dequantization cycle has readily 
apparent effects. The high-frequency portions of the matrix have for the most part been 
truncated down to zero, eliminating their effect on the decompressed image. The 
coefficients in the matrix that are close to the DC coefficient may have been modified, 
but only by small amounts. 

 
Figure 11.11  The effects of quantization. 

The interesting thing is that while we appear to be making wholesale changes to the 
saved image, quality factor 2 makes only minor changes that are barely noticeable. Yet 
the clearing of so many of the coefficients allows the image to be compressed by 60 
percent, even in the very simple compression program used in this chapter.  

Coding 

The final step in the JPEG process is coding the quantized images. The JPEG coding 
phase combines three different steps to compress the image. The first changes the DC 
coefficient at 0,0 from an absolute value to a relative value. Since adjacent blocks in an 
image exhibit a high degree of correlation, coding the DC element as the difference from 
the previous DC element typically produces a very small number. Next, the coefficients 
of the image are arranged in the “zig-zag sequence.” Then they are encoded using two 
different mechanisms. The first is run-length encoding of zero values. The second is what 
JPEG calls “Entropy Coding.” This involves sending out the coefficient codes, using 
either Huffman codes or arithmetic coding depending on the choice of the implementer.  



The Zig-Zag Sequence 

One reason the JPEG algorithm compresses so effectively is that a large number of 
coefficients in the DCT image are truncated to zero values during the coefficient 
quantization stage. So many values are set to zero that the JPEG committee elected to 
handle zero values differently from other coefficient values.  

Instead of relying on Huffman or arithmetic coding to compress the zero values, they are 
coded using a Run-Length Encoding (RLE) algorithm. A simple code is developed that 
gives a count of consecutive zero values in the image. Since over half of the coefficients 
are quantized to zero in many images, this gives an opportunity for outstanding 
compression. 

One way to increase the length of runs is to reorder the coefficients in the zig-zag 
sequence. Instead of compressing the coefficient in row-major order, as a programmer 
would probably do, the JPEG algorithm moves through the block along diagonal paths, 
selecting what should be the highest value elements first, and working its way toward the 
values likely to be lowest. 

The actual path of the zig-zag sequence is shown in Figure 11.12. In the code used in this 
chapter, the diagonal sequences of quantization steps follow exactly the same lines, so the 
zig-zag sequence should be optimal for our purposes. 

 
Figure 11.12  The path of the zig-zag sequence. 



Implementing the zig-zag sequence in C is probably done best using a simple lookup 
table. In our sample code for this chapter, the sequence is coded as part of a structure that 
can be accessed sequentially to determine which row and column to encode:  

struct zigzag { 
 int row; 
 int col; 
} ZigZag[ N * N ] = 
 
{ 
  {0, 0}, 
  {0, 1}, {1, 0}, 
  {2, 0}, {1, 1}, {0, 2}, 
  {0, 3}, {1, 2}, {2, 1}, {3, 0}, 
  {4, 0}, {3, 1}, {2, 2}, {1, 3}, {0, 4}, 
  {0, 5}, {1, 4}, {2, 3}, {3, 2}, {4, 1}, {5, 0}, 
  {6, 0}, {5, 1}, {4, 2}, {3, 3}, {2, 4}, {1, 5}, {0, 6}, 
  {0, 7}, {1, 6}, {2, 5}, {3, 4}, {4, 3}, {5, 2}, {6, 1}, {7, 0}, 
  {7, 1}, {6, 2}, {5, 3}, {4, 4}, {3, 5}, {2, 6}, {1, 7}, 
  {2, 7}, {3, 6}, {4, 5}, {5, 4}, {6, 3}, {7, 2}, 
  {7, 3}, {6, 4}, {5, 5}, {4, 6}, {3, 7}, 
  {4, 7}, {5, 6}, {6, 5}, {7, 4}, 
  {7, 5}, {6, 6}, {5, 7}, 
  {6, 7}, {7, 6}, 
  {7, 7} 
}; 

The C code that sends each of the DCT results to the compressor follows. Note that 
instead of directly looking up each result, we instead determine which row and column to 
use next by looking it up in the zig-zag structure. We then encode the element determined 
by the row and column from the zig-zag structure.  

 for ( i = 0 ; i < ( N * N ) ; i ++ ) { 
  row = ZigZag[ i ].row; 
  col = ZigZag[ i ].col; 
  result = DCT[ row ][ col ] / Quantum[ row ][ col ]; 
  OutputCode( output_file, ROUND( result ) ); 
 } 

Entropy Encoding 

After converting the DC element to a difference from the last block, then reordering the 
DCT block in the zig-zag sequence, the JPEG algorithm outputs the elements using an 
“entropy encoding” mechanism. The output has RLE built into it as an integral part of the 
coding mechanism. Basically, the output of the entropy encoder consists of a sequence of 
three tokens, repeated until the block is complete. The three tokens look like this:  

•Run Length:  The number of consecutive zeros that preceded the current element 
in the DCT output matrix.  

•Bit Count:  The number of bits to follow in the amplitude number.  
•Amplitude:  The amplitude of the DCT coefficient.  



The coding sequence used in this chapter’s test program is a combination of Run Length 
Encoding and variable-length integer coding. The run-length and bit-count values are 
combined to form a code that is output. The bit count refers to the number of bits used to 
encode the amplitude as a variable-length integer.  

The variable-length integer coding scheme takes advantage of the fact that the DCT 
output should consist of mostly smaller numbers, which we want to encode with smaller 
numbers of bits. The bit counts and the amplitudes which the encode follow. 

Bit Count  Amplitudes  
1  -1, 1  
2  -3 to -2, 2 to 3  
3  7 to -4, 4 to 7  
4  -15 to -8, 8 to 15  
5  -31 to -16, 16 to 31  
6  -63 to -32, 32 to 64  
7  -127 to -64, 64 to 127  
8  -255 to -128, 128 to 255  
9  -511 to -256, 256 to 511  
10  -1023 to -512, 512 to 1023  

Note that each bit count encodes a symmetrical set of high and low values. The values 
skipped over in the middle will be encoded with a lower bit count from one in the table.  

While this form of variable-bit coding is not quite as efficient as Huffman coding, it 
works fairly well, particularly if the data performs as expected, which means smaller 
values dominate and larger values are rare. 

What About Color? 

The sample programs in this chapter and most of the text have talked about how to 
compress images that have only one color component, usually a grey scale. This leaves 
the question of what to do with color images.  

Color images are generally composed of three components, such as the red, green, and 
blue of RGB, or the luminance and chrominance of YUV. In these cases, JPEG treats the 
image as if it were actually three separate images. An RGB image would first have its red 
component compressed, then its green, then its blue. This is essentially just more of the 
same. 



The Sample Program 

The sample program used to demonstrate DCT compression in this chapter is in the C 
source file DCT.C. It scan be compiled and linked with the standard support source files, 
BITIO.C, ERRHAND.C, and either MAIN-C.C for compression or MAIN-E.C for 
expansion.  

The DCT compression program takes an additional parameter on the command line, the 
quality factor. A factor of zero through twenty-five can be selected, zero being the best 
quality and twenty-five being the lowest. As was discussed earlier in this chapter, the 
quality factor is used to initialize the quantum table with the step sizes for each DCT 
element. 

The command syntax for the compression program is: 

DCT-C input-file output-file [quality] 

If no quality value is selected, it defaults to a value of three, which is an arbitrarily 
chosen constant. The quality factor is encoded in the compressed file, so the expansion 
program doesn’t need that parameter on the command line. The syntax for expansion is:  

DCT-E input-file output-file 

The DCT sample program in this chapter is not an implentation of JPEG compression. It 
does closely duplicate the first and second stages of the algorithm, however, which are 
the DCT transformation of the input, followed by the quantization and zig-zag coding 
steps. The only significant difference from the JPEG algorithm at this point is that the DC 
coefficient at 0,0 is not encoded as a difference from the last coefficient.  

The test program used here departs from being a JPEG implementation in the encoding 
phase after quantization is complete. DCT.C does not implement Huffman coding on the 
output, but it does implement a slightly different form of RLE and uses variable-length 
integer codes for output. 

Input Format 

Graphics files come in a plethora of formats. Decoding and understanding every format 
can become a bewildering problem, and the purpose of this book is not to be a treatise on 
file formats. Thus, the graphics examples used in this chapter are stored in the closest 
thing possible to a “non-format.”  

All of the graphics files used in this section are stored in a row-major order, so that all the 
pixels in each row are stored adjacent to one another. The top of the screen is stored first, 
with subsequent rows working their way down the screen. Each file is a 320 column by 
200 row grey-scale image, with pixels having eight bits, ranging from zero to 255. The 



grey-scale files have a file suffix of “GS,” which identifies them as “non-formatted” 
grey-scale files. 

This format is particularly easy to display on IBM VGA displays, but should be easy to 
adapt to any system that can display 256 colors. A short program, GS.C, is included to 
display the files on IBM VGA displays. Since VGA displays can only handle sixty-four 
grey-scale colors, some of the resolution of the image is lost on display, but the effect is 
relatively insignificant to the human eye. 

In addition to GS.C, which displays GS files on an IBM compatible VGA adaptor, there 
is a second display program called GSDIFF.C. This tests the differences between an 
original file and its reproduction after a compression/decompression cycle. First it gives a 
visual display of the differences between the two files. Then the root mean squared (rms) 
error is written to the screen. While the rms value is not the best way to assign a quality 
factor to a compression cycle, it does provide a good way to see how well compression is 
working. 

The Code 

A summarized version of the main compression module follows (a complete listing is at 
the end of the chapter). The main program first calls the initialization module, which sets 
up the quantization table and the cosine transform matrices. The quality parameter must 
be passed to this module to have it set up the quantization matrix properly.  

The next step is to write out the quality factor to the output file. By outputting this 
information, we eliminate the possibility of inadvertently trying to decompress using the 
wrong quantization matrix. This would cause the output to be catastrophically in error if 
it happened. 

   void CompressFile( FILE *input, BIT_FILE *output, 
             int argc, char *argv[] ) 
 { 
   int row; 
   int col; 
   int i; 
   unsigned char *input_array[ N ]; 
   int output_array[ N ][ N ]; 
   int quality; 
 
   quality = atoi( argv[ 0 ] ); 
   printf( "Using quality factor of %d\n", quality ); 
   Initialize( quality ); 
   OutputBits( output, quality, 8 ); 
   for ( row = 0 ; row <ROWS ; row += N ) { 
    ReadPixelStrip( input, PixelStrip ); 
    for ( col = 0 ; col < COLS ; col += N ) { 
     for ( i = 0 ; i < N ; i++ ) 
      input_array[ i ] = PixelStrip[ i ] + col; 
     ForwardDCT( input_array, output_array ); 
     WriteDCTData( output, output_array ); 



   } 
  } 
  OutputCode( output, 1 ); 
 } 

Finally, the main compression loop is entered. Since the data is stored a single row at a 
time, we need to read in a block of eight rows together before we can begin building 8-
by-8 blocks to compress. This is accomplished in the routine called ReadPixelStrip. It 
reads an entire strip of pixels 8 rows deep and 320 columns wide.  

The next part of the loop sets up the input_array. This actually gets passed to the DCT 
routine. It consists of a block of eight pointers into the pixel strip. When it is passed to the 
DCT routine, the input_array can be treated in the code as an 8-by-8 input matrix. 

The DCT routine is then called. It is passed an 8-by-8 unsigned character matrix and 
returns an 8-by-8 integer matrix. The integer matrix is then passed to the WriteDCTData() 
routine for compression and to be written to the file. 

The final step in the program is to call the OutputCode() routine one last time with a 
dummy non-zero value. The OutputCode() routine tracks consecutive zeros for the run-
length encoding portion of the program. If the file ends with several consecutive zeros, 
they many need to be flushed before the program exits. 

Initialization 

DCT.C has single initialization routine that is called for both compression and expansion. 
It first sets up the quantization matrix, using the quality parameter passed to it. This uses 
the simple formula for defining step sizes discussed earlier.  

Once the quantization matrix is set up, the next step is to set up the cosine transform 
matrix and the transposed cosine transform matrix These matrices are used by the 
forward DCT and the inverse DCT, so they can be set up in a common routine. Setting 
them up involves nothing more than a simple translation of the formula shown in Figure 
11.8. 

The final step in initialization is to initialize the run-length encoding counters used on 
input and output. These values are used when either outputting or inputting codes, and 
they track the number of consecutive zero codes that have output or will be input. 

 void Initialize( int quality ) 
 { 
  int i; 
  int j; 
 
  for ( i = 0 ; i < N ; i++ ) 
   for (j = 0 ; j < N ; j++ ) 
    Quantum[ i ][ j ] = 1 + ( ( 1 + i + j ) * quality ); 
  for ( j = 0 ; j < N ; j++ ) { 
   C[ 0 ][ j ] = 1.0 / sqrt( N ); 



   Ct[ j ][ 0 ] = C[ 0 ][ j ]; 
  } 
  for ( i = 1 ; i < N ; i++ ) { 
   for ( j = 0 ; j < N ; j++ ) { 
    C[ i ][ j ] = sqrt( 2.0 / N ) * 
           cos( ( 2 * j + 1 ) * i * pi / ( 2.0 * N ) ) ; 
    Ct[ j ][ i ] = C[ i ][ j ]; 
   } 
  } 
  OutputRunLength = 0; 
  InputRunLength = 0; 
 } 

The Forward DCT Routine 

Despite the seeming complexity of the DCT, it is accomplished in a very short routine. 
All it does is first perform a matrix multiplication of the input pixel data matrix by the 
transposed cosine transform matrix and store the result in a temporary N-by-N matrix. 
Then the temporary matrix is multiplied by the cosine transform matrix, and the result is 
stored in the output matrix, which is passed back to the caller.  

Note here that all input pixel values are scaled before being multiplied by the transposed 
cosine transform matrix. After being scaled, they have a range of -128 to 127 instead of 
the zero to 255 range they had before. This is consistent with the way the JPEG algorithm 
handles input data. 

  void ForwardDCT( input, output ) 
  unsigned char *input[ N ]; 
  int output[ N ][ N ]; 
  { 
   double temp[ N ][ N ]; 
   double temp1; 
   int i; 
   int j; 
   int k; 
 
  /*MatrixMultiply( temp, input, Ct ); */ 
 
   for ( i = 0 ; i < N ; i++ ) { 
    for ( j = 0 ; j < N ; j++ ) { 
     temp[ i ][ j ] = 0.0; 
     for ( k = 0 ; k < N ; k++ ) 
      temp[ i ][ j ] += ( input[ i ][ k ] - 128 ) * 
               Ct[ k ] [ j ]; 
    } 
   } 
  /*MatrixMultiply( output, C, temp ); */ 
 
   for ( i = 0 ; i < N ; i++ ) { 
    for ( j = 0 ; j < N ; j++ ) { 
     temp1 = 0.0; 
     for ( k = 0 ; k < N ; k++ ) 
      temp1 += C[ i ][ k ] * temp[ k ][ j ]; 
     output[ i ][ j ] = ROUND( temp1 ); 



   } 
  } 
 } 

Another point to observe is that we are dealing with several different data types here and 
a certain amount of care needs to be exercised so as not to cause problems during 
conversions. The input data coming from the pixel strip is unsigned character converted 
during the matrix multiplication to integer, then multiplied by a double. The result is 
stored in a double temporary matrix. Finally, the last matrix multiplication produces 
double values, which are then rounded to integers for storage in the output matrix. If 
everything goes as planned, the integers should be in the range of -1,024 to 1,023, and 
they are ready for quantization.  

WriteDCTData() 

This routine is responsible for ordering the DCT result matrix into the zigzag pattern, 
then quantizing the data. Both of these just involve table lookups of values that have been 
stored either during initialization or at compile time. Then, the quantized value is rounded 
to the nearest integer and sent to the routine that outputs codes.  

  void WriteDCTData( BIT_FILE *output_file, output_data[ N ][ N ] ) 
  { 
   int i; 
   int row; 
   int col; 
   double result; 
 
   for ( i = 0 ; i < ( N * N ) ; i++ ) { 
    row = ZigZag[ i ].row; 
    col = ZigZag[ i ].col; 
    result = output_data[ row ][ col ] / Quantum[ row ][ col ]; 
    OutputCode( output_file, ROUND( result ) ); 
   } 
 } 

OutputCode() 

This routine is complicated by the fact that it has to handle quite a few different situations 
in the output data. In general, this routine puts out two numbers every time it is called. 
The first number is the number of bits used in the output word to follow. The second 
number is the actual amplitude of the output, encoded using a variable-length word, as in 
the JPEG algorithm.  

The number of bits parameter that is output first can range anywhere from zero to ten. To 
encode this number using standard binary arithmetic would take four bits for every 
number. To achieve a minor amount of savings, this routine uses a simple prefix code to 
output the number of bits, which will result in a small net savings. 

  void OutputCode( BIT_FILE *output_file, int code ) 
  { 



   int top_of_range; 
   int abs_code; 
   int bit_count; 
 
   if ( code == 0 ) { 
    OutputRunLength++; 
    return; 
   } 
   if ( OutputRunLength != 0 ) { 
     while ( OutputRunLength > 0 ) { 
      OutputBits( output_file, 0, 2 ); 
      if ( OutputRunLength <= 16 ) { 
       OutputBits( output_file, OutputRunLength - 1, 4 ); 
       OutputRunLength = 0; 
      } else { 
       OutputBits( output_file, 15, 4 ); 
       OutputRunLength -= 16; 
      } 
    } 
   } 
   if ( code < 0 ) 
    abs_code = -code; 
   else 
     abs_code = code; 
    top_of_range = 1; 
    bit_count = 1; 
    while ( abs_code > top_of_range ) { 
     bit_count++; 
     top_of_range = ( ( top_of_range + 1 ) * 2 ) - 1; 
    } 
    if ( bit_count < 3 ) 
     OutputBits( output_file, bit_count + 1, 3 ) ; 
    else 
     OutputBits( output_file, bit_count + 5, 4 ); 
    if ( code > 0 ) 
     OutputBits( output_file, code, bit_count ); 
    else 
     OutputBits( output_file, code + top_of_range, bit_count ); 
  } 

 
Figure 11.13  The coding for number of bits. 



As if this prefix code didn’t complicate things enough, OutputCode() has an additional 
thing to worry about; run-length encoding. Since it doesn’t make sense to have a number 
of bits equal to zero, that value is actually used to encode a run of zeros. The number of 
consecutive zeros is encoded as a four-bit number immediately following a bit count of 
zero. Note that the four-bit number encodes runs of length 1 to 16, not 0 to 15 as might be 
first suspected. This is done since there is no reason to waste a code on a run length of 
zero.  

To properly encode runs of zeros, OutputCode() tracks the current run length. Anytime 
OutputCode() is called to send out a value of zero, the routine actually just increments the 
run-length counter, then returns. 

The routine will finally be able to output the length of a run when one of two things 
happens. First, the run length can actually reach sixteen. This is the longest run we can 
encode, which means it will flush the counter with a run output. The other situation is 
when OutputCode() is called to send a non-zero code, and the run-length counter is 
greater than zero. This means a run has just concluded, and it is time to output if. 

The final complication in this routine is the encoding of normal numbers. As was shown 
in the earlier figure, these have an unusual format, with each code encoding a range of 
negative numbers, then a range of positive numbers, with a gap in between. 

OutputCode() first determines how many bits are going to be needed to encode the code 
by sitting in a loop checking to see if the output code falls in the appropriate range. When 
it finds the correct range, it encodes the number, using a different offset for negative and 
positive numbers. 

File Expansion 

Once the file-compression algorithm is understood, file expansion is relatively easy to 
follow. The expansion routine first reads in the quality number from the file and uses it to 
initialize the matrix data. It then sits in a loop, reading in 8-by-8 DCT blocks. The routine 
that reads the DCT data also takes it out of the zig-zag sequence, storing it in row normal 
fashion, then dequantizing it. At that point, it is run through the inverse DCT procedure, 
which returns a block of pixel data. Once an entire strip of pixel data has been read in, it 
is written to the uncompressed output file.  

Note that the expansion routine uses an array of pointers to redirect the output of the 
inverse DCT to the PixelStrip array. This array has to be set up before every inverse DCT 
is called so the data is directed to the correct point in the pixel strip. The pixel strip is a 
matrix 8 rows deep and 320 columns wide. 

void ExpandFile( BIT_FILE *input, FILE *output, 
         int argc, char *argv[] ) 
{ 
 int row; 
 int col; 



 int i; 
 int input_array[ N ][ N ]; 
 unsigned char *output_array[ N ]; 
 int quality; 
 
 quality = (int) InputBits( input, 8 ); 
 Initialize( quality ); 
 for ( row = 0 ; row < ROWS; row += N ) { 
  for ( col = 0 ; col < COLS ; col += N ) { 
   for ( i = 0 ; i < N ; i++ ) 
    output_array[ i ] = PixelStrip[ i ] + col; 
  ReadDCTData( input, input_array ); 
  InverseDCT( input_array, output_array ); 
  } 
  WritePixelStrip( output, PixelStrip ); 
 } 
} 

ReadDCTData() 

This routine reads in DCT codes from the InputCode routine, dequantizes them, then 
stores them in the correct location. The codes read back in have been stored in the zig-zag 
sequence, so they have to be redirected to their appropriate locations in the 8-by-8 block. 
This is accomplished with a simple table lookup.  

void ReadDCTData( input_file, input_data ) 
BIT_FILE *input_file; 
int input_data[ N ][ N ]; 
{ 
 int i; 
 int row; 
 int col; 
 
 for ( i = 0 ; i < ( N * N ) ; i++ ) { 
  row = ZigZag[ i ].row; 
  col = ZigZag[ i ].col; 
  input_data[ row ][ col ] = InputCode( input_file ) * 
             Quantum[ row ][ col ]; 
 } 
} 

Input DCT Codes 

Reading in the DCT codes is somewhat less complicated than writing them out, but a 
number of factors still need to be taken into account. First, we read in the first two bits of 
the bit count code. If the two bits have a value of zero, it means that a run of zeros is 
being encoded with this value. The zero count is read in using the next four bits and 
stored in the global run-length indicator.  

The global run-length indicator is stored in the InputRunLength variable, and it is 
checked every time the InputCode routine is called. If the value in this variable is non-



zero, we are still returning a run of zeros. When this is the case, the run-length indicator 
is decremented, and a zero is returned to the calling program. 

In the event that the first two bits aren’t zero, we are working with a normal bit count 
code. Either two or three more bits are read in to compose the rest of the code, which 
yields the correct bit count. We can then read in the encoded amplitude of the DCT 
variable by reading in that bit count. 

Once that value is loaded in, we need to convert it to a normal number from the specially 
encoded form it is in, which is relatively simple. Finally, the correct number is returned to 
the calling for dequantization and processing. 

int InputCode( input_file ) 
BIT_FILE *input_file; 
{ 
 int bit_count; 
 int result; 
 
 if ( InputRunLength > 0 ) { 
  InputRunLength--; 
  return( 0 ); 
 } 
 bit_count = (int) InputBits( input_file, 2 ); 
 if ( bit_count == 0 ) { 
  InputRunLength = (int) InputBits( input_file, 4 ); 
  return( 0 ); 
 } 
 if ( bit_count == 1 ) 
  bit_count = (int) InputBits( input_file, 1 ) + 1; 
 else 
  bit_count = (int) InputBits( input_file, 2 ) + 
       ( bit_count << 2 ) - 5; 
 result = (int) InputBits( input_file, bit_count ); 
 if ( result & ( 1 << ( bit_count - 1 ) ) ) 
  return( result ); 
 return( result - ( 1 << bit_count ) + 1 ); 
} 

The Inverse DCT 

The Inverse DCT is performed using the exact reverse of the operations performed in the 
DCT. First, the DCT values in the N-by-N matrix are multiplied by the cosine transform 
matrix. The result of this transformation is stored in a temporary N-by-N matrix of 
doubles. This matrix is then multiplied by the transposed cosine transform matrix. The 
result of this multiplication is rounded, scaled to the correct unsigned character range of 
zero to 255, then stored in the output block of pixels.  

void InverseDCT( int input[ N ][ N ], unsigned char *output[ N ] ) 
{ 
 double temp[ N ][ N ]; 
 double temp1; 
 int i; 



 int j; 
 int k; 
 
/*MatrixMultiply( temp, input, C ); */ 
 for ( i = 0 ; i < N ; i++ ) { 
  for ( j = 0 ; j < N ; j++ ) { 
   temp[ i ][ j ] = 0.0; 
   for ( k = 0 ; k < N ; k++ ) 
    temp[ i ][ j ] += input[ i ][ k ] * C[ k ][ j ]; 
 } 
} 
 
/*MatrixMultiply( output, Ct, temp ); */ 
 for ( i = 0 ; i < N ; i++ ) { 
  for ( j = 0 ; j < N ; j++ ) { 
   temp1 = 0.0; 
   for ( k = 0 ; k < N ; k++ ) 
    temp1 += Ct[ i ][ k ] * temp[ k ][ j ]; 
   temp1 += 128.0; 
   if ( temp1 < 0 ) 
    output[ i ][ j ] = 0; 
   else if ( temp1 > 255 ) 
    output[ i ][ j ] = 255; 
   else 
    output[ i ][ j ] = ROUND( temp1 ); 
  } 
 } 
} 

The Complete Code Listing 

The complete listing of DCT.C follows.  

/*************************** Start of DCT.C *************************** 
* 
* This is the DCT module, which implements a graphics compression 
* program based on the discrete cosine transform. It needs to be 
* linked with the standard support routines. 
* 
*/ 
 
#include <stdio. h> 
#include <stdlib.h> 
#include <math.h> 
#include "bitio.h" 
#include "errhand.h" 
 
/* 
* A few parameters can be adjusted to modify the compression 
* algorithm. The first two define the number of rows and columns in 
* the grey-scale image. The last one, 'N,' defines the DCT block size. 
*/ 
#define ROWS 200 
#define COLS 320 
#define N  8 
 



/* 
* This macro is used to ensure correct rounding of integer values. 
*/ 
#define ROUND( a )   ( ( (a) < 0 ) ? (int) ( (a) - 0.5 ) : \ 
                         (int) ( (a) + 0.5 ) ) 
 
char *CompressionName = "DCT compression"; 
char *Usage      = "infile outfile [quality]\nQuality from 0-25"; 
 
/* 
* Function prototypes for both ANSI and K&R. 
*/ 
#ifdef __STDC__ 
 
void Initialize( int quality ); 
void ReadPixelStrip( FILE *input, unsigned char strip[ N ][ COLS ] ); 
int InputCode( BIT_FILE *input ); 
void ReadDCTData( BIT_FILE *input, int input_data[ N ][ N ] ); 
void OutputCode( BIT_FILE *output_file, int code ); 
void WriteDCTData( BIT_FILE *output_file, int output_data[ N ][ N ] ); 
void WritePixelStrip( FILE *output, unsigned char strip[ N ][ COLS ] ); 
void ForwardDCT( unsigned char *input[ N ], int output[ N ][ N ] ); 
void InverseDCT( int input[ N ][ N ], unsigned char *output[ N ] ); 
void CompressFile( FILE *input, BIT_FILE *output, 
                   int argc, char *argv[] ); 
void ExpandFile( BIT_FILE *input, FILE *output, int argc, char 
*argv[] ); 
 
#else 
 
void Initialize(); 
void ReadPixelStrip(); 
int InputCode(); 
void ReadDCTData(); 
void OutputCode(); 
void WriteDCTData(); 
void WritePixelStrip(); 
void ForwardDCT(); 
void InverseDCT(); 
void CompressFile(); 
void ExpandFile(); 
 
#endif 
 
/* 
* Global data used at various places in the program. 
*/ 
unsigned char PixelStrip[ N ][ COLS ]; 
double C[ N ][ N ]; 
double Ct[ N ][ N ]; 
int InputRunLength; 
int OutputRunLength; 
int Quantum[ N ][ N ]; 
 
struct zigzag { 
 int row; 
 int col; 



} ZigZag[ N * N ] = 
{ 
{0, 0}, 
{0, 1}, {1, 0}, 
{2, 0}, {1, 1}, {0, 2}, 
{0, 3}, {1, 2}, {2, 1}, {3, 0}, 
{4, 0}, {3, 1}, {2, 2}, {1, 3}, {0, 4}, 
{0, 5}, {1, 4}, {2, 3}, {3, 2}, {4, 1}, {5, 0}, 
{6, 0}, {5, 1}, {4, 2}, {3, 3}, {2, 4}, {1, 5}, {0, 6}, 
{0, 7}, {1, 6}, {2, 5}, {3, 4}, {4, 3}, {5, 2}, {6, 1}, {7, 0}, 
{7, 1}, {6, 2}, {5, 3}, {4, 4}, {3, 5}, {2, 6}, {1, 7}, 
{2, 7}, {3, 6}, {4, 5}, {5, 4}, {6, 3}, {7, 2}, 
{7, 3}, {6, 4}, {5, 5}, {4, 6}, {3, 7}, 
{4, 7}, {5, 6}, {6, 5}, {7, 4}, 
{7, 5}, {6, 6}, {5, 7}, 
{6, 7}, {7, 6}, 
{7, 7} 
}; 
 
/* 
* The initialization routine has the job of setting up the cosine 
* transform matrix, as well as its transposed value. These two matrices 
* are used when calculating both the DCT and its inverse. In addition, 
* the quantization matrix is set up based on the quality parameter 
* passed to this routine. The two run-length parameters are both 
* set to zero. 
*/ 
 
void Initialize( quality ) 
int quality; 
{ 
 int i; 
 int j; 
 double pi = atan( 1.0 ) * 4.0; 
 
 for ( i = 0 ; i < N ; i++ ) 
  for ( j = 0 ; j < N ; j++ ) 
   Quantum[ i ][ j ] = 1 + ( ( 1 + i + j ) * quality ); 
 OutputRunLength = 0; 
 InputRunLength = 0; 
 for ( j = 0 ; j < N ; j++ ) { 
   C[ 0 ][ j ] = 1.0 / sqrt( (double) N ); 
   Ct[ j ][ 0 ] = C[ 0 ][ j ]; 
 } 
 for ( i = 1 ; i < N ; i++ ) { 
  for ( j = 0 ; j < N ; j++ ) { 
   C[ i ][ j ] = sqrt( 2.0 / N ) * 
          cos( pi * ( 2 * j + 1 ) * i / ( 2.0 * N ) ) ; 
   Ct[ j ][ i ] = C[ i ][ j ]; 
  } 
 } 
} 
 
/* 
* This routine is called when compressing a grey-scale file. It reads 
* in a strip that is N (usually eight) rows deep and COLS (usually 320) 
* columns wide. This strip is then repeatedly processed, a block at a 



* time, by the forward DCT routine. 
*/ 
void ReadPixelStrip( input, strip ) 
FILE *input; 
unsigned char strip[ N ][ COLS ]; 
{ 
 int row; 
 int col; 
 
  int c; 
  for ( row = 0 ; row < N ; row++ ) 
   for ( col = 0 ; col < COLS ; col++ ) { 
    c = getc( input ); 
    if ( c == EOF ) 
     fatal_error( "Error reading input grey scale file" ); 
    strip[ row ][ col ] = (unsigned char) c; 
   } 
} 
/* 
* This routine reads in a DCT code from the compressed file. The code 
* consists of two components, a bit count, and an encoded value. The 
* bit count is encoded as a prefix code with the following binary 
* values: 
* 
*       Number of Bits                 Binary Code 
*             0                            00 
*             1                            010 
*             2                            011 
*             3                           1000 
*             4                           1001 
*             5                           1010 
*             6                           1011 
*             7                           1100 
*             8                           1101 
*             9                           1110 
*             10                          1111 
* 
* A bit count of zero is followed by a four-bit number telling how many 
* zeros are in the encoded run. A value of one through ten indicates a 
* code value follows, which takes up that many bits. The encoding of 
* values into this system has the following characteristics: 
* 
*      Bit Count                         Amplitudes 
*         1                                -1, 1 
*         2                           3 to -2, 2 to 3 
*         3                          -7 to -4, 4 to 7 
*         4                         -15 to -8, 8 to 15 
*         5                        -31 to -16, 16 to 31 
*         6                        -63 to -32, 32 to 64 
*         7                       -127 to -64, 64 to 127 
*         8                      -255 to -128, 128 to 255 
*         9                      -511 to -256, 256 to 511 
*        10                     -1023 to -512, 512 to 1023 
* 
*/ 
 
int InputCode( input_file ) 



BIT_FILE *input_file; 
{ 
 int bit_count; 
 int result; 
 
 if ( InputRunLength > 0 ) { 
  InputRunLength--; 
  return( 0 ); 
 } 
 bit_count = (int) InputBits( input_file, 2 ); 
 if ( bit_count == 0 ) { 
  InputRunLength = (int) InputBits( input_file, 4); 
  return( 0 ); 
 } 
 if ( bit_count == 1 ) 
  bit_count = (int) InputBits( input_file, 1 ) + 1; 
 else 
  bit_count = (int) InputBits( input_file, 2 ) + 
              ( bit_count << 2 ) - 5; 
 result = (int) InputBits( input_file, bit_count ); 
 if ( result & ( 1 << ( bit_count - 1 ) ) ) 
  return( result ); 
 return( result - ( 1 << bit_count ) + 1 ); 
} 
 
/* 
* This routine reads in a block of encoded DCT data from a compressed 
* file. The routine reorders it in row major format and dequantizes it 
* using the quantization matrix. 
*/ 
 
void ReadDCTData( input_file, input_data ) 
BIT_FILE *input_file; 
int input_data[ N ][ N ]; 
{ 
 int i; 
 int row; 
 int col; 
 
 for ( i = 0 ; i < ( N * N ) ; i++ ) { 
  row = ZigZag[ i ].row; 
  col = ZigZag[ i ].col; 
  input_data[ row ][ col ] = InputCode( input_file ) * 
                Quantum[ row ][ col ]; 
 } 
} 
 
/* 
* This routine outputs a code to the compressed DCT file. For specs 
* on the exact format, see the comments that go with InputCode, shown 
* earlier in this file. 
*/ 
 
void OutputCode( output_file, code ) BIT_FILE *output_file; 
int code; 
{ 
 int top_of_range; 



 int abs_code; 
 int bit_count; 
 
 if ( code == 0 ) { 
  OutputRunLength++; 
  return; 
 } 
 if ( OutputRunLength != 0 ) { 
  while ( OutputRunLength > 0 ) { 
  if ( OutputRunLength <= 16 ) { 
    OutputBits( output_file, 
         (unsigned long) (OutputRunLength - 1 ), 4 ); 
    OutputRunLength = 0; 
  } else { 
   OutputBits( output_file, 15L, 4 ); 
   OutputRunLength -= 16; 
  } 
 } 
} 
if ( code < 0 ) 
 abs_code = -code; 
else 
 abs_code = code; 
top_of_range = 1; 
bit_count = 1; 
while ( abs_code > top_of_range ) { 
 bit_count++; 
 top_of_range = ( ( top_of_range + 1 ) * 2 ) - 1; 
 
 } 
 if ( bit_count < 3 ) 
   OutputBits( output_file, (unsigned long) ( bit_count + 1 ), 3 ); 
 else 
   OutputBits( output_file, (unsigned long) ( bit_count + 5 ), 4 ); 
 if (code > 0 ) 
   OutputBits( output_file, (unsigned long) code, bit_count ); 
 else 
   OutputBits( output_file, (unsigned long) ( code + top_of_range ) , 
               bit_count ); 
} 
 
/* 
* This routine takes DCT data, puts it in zigzag order, quantizes 
* it, and outputs the code. 
*/ 
 
void WriteDCTData( output_file, output_data ) 
BIT_FILE *output_file; 
int output_data[ N ][ N ]; 
{ 
 int i; 
 int row; 
 int col; 
 double result; 
 
 for ( i = 0 ; i < ( N * N ) ; i++ ) { 
  row = ZigZag[ i ].row; 



  col = ZigZag[ i ].col; 
  result = output_data[ row ][ col ] / Quantum[ row ][ col ]; 
  OutputCode( output_file, ROUND( result ) ): 
 } 
} 
 
/* 
* This routine writes out a strip of pixel data to a GS format file. 
*/ 
 
void WritePixelStrip( output, strip ) 
FILE *output; 
unsigned char strip[ N ][ COLS ]; 
{ 
 int row; 
 int col; 
 
 for ( row = 0 ; row < N ; row++ ) 
  for ( col = 0 ; col < COLS ; col++ ) 
   putc( strip[ row ][ col ], output ); } 
 
/* 
* The Forward DCT routine implements the matrix function: 
* 
*       DCT = C * pixels * Ct 
*/ 
 
void ForwardDCT( input, output ) 
unsigned char *input[ N ]; 
int output[ N ][ N ]; 
{ 
 double temp[ N ][ N ]; 
 double temp1; 
 int i; 
 int j; 
 int k; 
 
/* MatrixMultiply( temp, input, Ct ); */ 
 for ( i = 0 ; i < N ; i++ ) { 
  for ( j = 0 ; j < N ; j++ ) { 
   temp[ i ][ j ] = 0.0; 
   for ( k = 0 ; k < N ; k++ ) 
    temp[ i ][ j ] += ( (int) input [ i ][ k ] - 128 ) * 
               Ct[ k ][ j ]; 
  } 
 } 
 
/* MatrixMultiply( output, C, temp ); */ 
 for ( i = 0 ; i < N ; i++ ) { 
  for ( j = 0 ; j < N ; j++ ) { 
   temp1 = 0.0; 
   for ( k = 0 ; k < N ; k++ ) 
    temp1 += C[ i ][ k ] * temp[ k ][ j ]; 
   output[ i ][ j ] = ROUND( temp1 ); 
  } 
 } 
} 



 
/* 
* The Inverse DCT routine implements the matrix function: 
* 
*       pixels = C * DCT * Ct 
*/ 
 
void InverseDCT( input, output ) 
int input[ N ][ N ]; 
unsigned char *output[ N ]; 
{ 
 double temp[ N ][ N ]; 
 double temp1; 
 int i; 
 int j; 
 int k; 
 
/* MatrixMultiply( temp, input, C ); */ 
 for ( i = 0 ; i < N ; i++ ) { 
  for ( j = 0 ; j < N ; j++ ) { 
   temp[ i ][ j ] = 0.0; 
   for ( k = 0 ; k < N ; k++ ) 
    temp[ i ][ j ] += input[ i ][ k ] * C[ k ][ j ]; 
  } 
 } 
 
/* MatrixMultiply( output, Ct, temp ); */ 
 for ( i = 0 ; i < N ; i++ ) { 
  for ( j = 0 ; j < N ; j++ ) { 
   temp1 = 0.0; 
   for ( k = 0 ; k < N ; k++ ) 
    temp1 += Ct[ i ][ k ] * temp[ k ][ j ]; 
   temp1 += 128.0; 
   if ( temp1 < 0 ) 
    output[ i ][ j ] = 0; 
   else if ( temp1 > 255 ) 
    output[ i ][ j ] = 255; 
   else 
    output[ i ][ j ] = (unsigned char) ROUND( temp1 ); 
  } 
 } 
} 
 
/* 
* This is the main compression routine. By the time it gets called, 
* the input and output files have been properly opened, so all it has 
to 
* do is the compression. Note that the compression routine expects an 
* additional parameter, the quality value, ranging from 0 to 25. 
*/ 
 
void CompressFile( input, output, argc, argv ) 
FILE *input; 
BIT_FILE *output; 
int argc; 
char *argv[]; 
{ 



 int row; 
 int col; 
 int i; 
 unsigned char *input_array[ N ]; 
 
 int output_array[ N ][ N ]; 
 int quality; 
 
 if ( argc-- > 0 ) 
  quality = atoi( argv[ 0 ] ); 
 else 
  quality = 3; 
 if ( quality < 0 || quality > 50 ) 
  fatal_error( "Illegal quality factor of %d\n", quality ); 
 printf( "Using quality factor of %d\n", quality ); 
 Initialize( quality ); 
 OutputBits( output, (unsigned long) quality, 8 ); 
 for ( row = 0 ; row < ROWS ; row += N ) { 
  ReadPixelStrip( input, PixelStrip ); 
  for ( col = 0 ; col < COLS ; col += N ) { 
    for ( i = 0 ; i < N ; i++ ) 
     input_array[ i ] = PixelStrip[ i ] + col; 
    ForwardDCT( input_array, output_array ); 
    WriteDCTData( output, output_array ); 
   } 
 } 
 OutputCode( output, 1); 
 while ( argc-- > 0 ) 
   printf( "Unused argument: %s\n", *argv++ ); 
} 
 
/* The expansion routine reads in the compressed data from the DCT file, 
* then writes out the decompressed grey-scale file. 
*/ 
 
void ExpandFile( input, output, argc, argv) 
BIT_FILE *input; 
FILE *output; 
int argc; 
char *argv[]; 
{ 
 int row; 
 int col; 
 int i; 
 int input_array[ N ][ N ]; 
 unsigned char *output_array[ N ]; 
 int quality; 
 
 quality = (int) InputBits( input, 8 ); 
 printf( "\rUsing quality factor of %d\n", quality ); 
 Initialized( quality ); 
 for ( row = 0 ; row < ROWS ; row += N ) { 
  for ( col = 0 ; col < COLS ; col += N ) { 
   for ( i = 0 ; i < N ; i++ ) 
    output_array[ i ] = PixelStrip[ i ] + col; 
   ReadDCTData( input, input_array ); 
   InverseDCT( input_array, output_array ); 



  } 
  WritePixelStrip( output, PixelStrip ); 
 } 
 while ( argc-- > 0 ) 
  printf( "Unused argument: %s\n", *argv++ ); 
} 
/**************************** End of DCT.C ***************************/ 
 

Support Programs 

The two support programs used in this chapter are GS.C, used to display “non-format” 
grey-scale files, and GSDIFF.C, used to display the differences between two files and to 
print the rms value of the error. They follow.  

/*************************** Start of GS.C ***************************/ 
* 
* This is the GS program, which displays grey-scale files on the 
* IBM VGA adaptor. It assumes that the grey-scale values run from 
* zero to 255, and scales them down to a range of zero to sixty-three, 
* so they will be displayed properly on the VGA. 
* 
* This program can be called with a list of files, and will display 
them 
* in consecutive order, which is useful for trying to measure visual 
* differences in compressed files. 
* 
* This program writes directly to video memory, which should work 
* properly on most VGA adaptors. In the event that it doesn't, the 
* constant USE_BIOS can be turned on, and the code will use BIOS calls 
* to write pixels instead. This will be somewhat slower, but should 
work 
* on every VGA adaptor. 
* 
* Note that the use of far pointers means this program should probably 
* be compiled without using the strict ANSI option of your compiler. 
*/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <dos.h> 
#include <conio.h> 
 
main( int argc, char *argv[] ) 
{ 
 union REGS rin; 
 union REGS rout; 
 int i; 
 FILE *file; 
 char far *video; 
 
 if ( argc < 2 ) { 
  printf( "Usage: gs file\n\n" ); 
  exit( 1 ); 
 } 
 rin.h.ah = 0; 



 rin.h.al = 0x13; 
 int86( 0x10, &rin, &rout ); 
 rin.h.ah = 0x10; 
 rin.h.al = 0x10; 
 
  for ( i = 0 ; i < 64 ; i++ ) { 
   rin.h.dh = (unsigned char) i; 
   rin.h.ch = (unsigned char) i; 
   rin.h.cl = (unsigned char) i; 
   rin.x.bx = i; 
   int86( 0x10, &rin, &rout ); 
  } 
  rin.h.ah = 0x10; 
  rin.h.al = 0x1b; 
  rin.x.cx = 256; 
  rin.x.bx = 0; 
  int86( 0x10. &rin, &rout ); 
 
  argv++; 
  while ( —argc > 0 ) { 
   file = fopen( *argv++, "rb" ); 
   if ( file == NULL ) { 
     putc( 7, stdout ); 
     break; 
   } 
   video = (char far *) 0xA0000000L; 
   rin.h.ah = 0x0c; 
   rin.h.bh = 0; 
   for ( rin.x.dx = 0 ; rin.x.dx < 200 ; rin.x.dx++ ) { 
     for ( rin.x.cx = 0 ; rin.x.cx < 320 ; rin.x.cx++ ) { 
#ifdef USE_BIOS 
        rin.h.al = (unsigned char) ( getc( file ) >> 2); 
        int86( 0x10, &rin, &rout ); 
#else 
        *video++ = (char) ( getc( file ) >> 2); 
#endif 
    } 
   } 
   fclose( file ); 
   getch(); 
  } 
  rin.h.ah = 0; 
 rin.h.al = 3; 
 int86( 0x10. &rin, &rout ); 
 return 0; 
} 
/***************************** End of GS.C ***************************/ 
 
/***************************** Start of GSDIFF.C ********************** 
* 
* This is the GSDIFF program, which displays the differences between 
* two grey-scale files on the IBM VGA adaptor. It assumes that the 
* grey-scale values run from zero to 255, and scales them down to a 
* range of zero to sixty-three, so they will be displayed properly on 
* the VGA. 
* 
* This program writes directly to video memory, which should work 



* properly on most VGA adaptors. In the event that it doesn't, the 
* constant USE_BIOS can be turned on, and the code will use BIOS calls 
* to write pixels instead. This will be somewhat slower, but should 
work 
* on every VGA adaptor. 
* 
* While this program is writing out to the display, it is also keeping 
a 
* running total of the error differences. When the program is 
* complete, it prints out the RMS error. If the -B switch is turned 
* on, the program operates in batch mode, and doesn't display the 
* differences. It just computes and prints the rms error value. 
* 
* Note that the use of far pointers means this program should probably 
* be compiled without using the strict ANSI option of your compiler. 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string> 
#include <dos.h> 
#include <conio.h> 
#include <math.h> 
main( int argc, char *argv[] ) 
{ 
 union REGS rin; 
 union REGS rout; 
 int i; 
 FILE *file1; 
 FILE *file2; 
 int diff; 
 int c1; 
 int c2; 
 char far *video; 
 double error; 
 int batch; 
 
 if ( argc < 3 ) { 
  printf( "Usage: gsdiff file1 file2 [-B]\n\n" ); 
  exit( 1 ); 
 } 
 file1 = fopen( argv[ 1 ], "rb" ); 
 file2 = fopen( argv[ 2 ], "rb" ); 
 if ( file1 == NULL || file2 == NULL ) { 
  printf( "Could not open file!\n" ); 
  exit( 1 ); 
 } 
 batch = 0; 
 if ( argc > 3 ) 
  if ( strcmp( argv[ 3 ], "-b" ) == 0 || 
   strcmp( argv [ 3 ], "-B" ) == 0 ) 
   batch = 1; 
 if ( !batch ) { 
  rin.h.ah = 0; 
  rin.h.al = 0x13; 
  int86( 0x10, &rin, &rout ); 
  rin.h.ah = 0x10; 



  rin.h.al = 0x10; 
  for ( i = 0 ; i < 64 ; i++ ) { 
    rin.h.dh = (unsigned char) i; 
    rin.h.ch = (unsigned char) i; 
    rin.h.cl = (unsigned char) i; 
    rin.x.bx = i; 
    int86( 0x10, &rin, &rout ); 
  } 
  rin.h.ah = 0x10; 
  rin.h.al = 0x1b; 
  rin.x.cx = 256; 
  rin.x.bx = 0; 
  int86( 0x10, &rin, &rout ); 
 } 
 error = 0.0; 
 video = (char far *) 0xA0000000L; 
 rin.h.ah = 0x0c; 
 rin.h.bh = 0; 
 for ( rin.x.dx = 0 ; rin.x.dx < 200 ; rin.x.dx++ ) { 
   for ( rin.x.cx = 0 ; rin.x.cx < 320 ; rin.x.cx++ ) { 
    c1 = getc( file1 ); 
    c2 = getc( file2 ); 
    diff = c1 - c2; 
    error += diff*diff; 
    if ( diff < 0 ) 
     diff *= -1; 
    if ( diff > 63 ) 
     diff = 63; 
    if ( !batch ) { 
#ifdef USE_BIOS 
     rin.h.al = diff; 
     int86( 0x10, &rin, &rout ); 
#else 
     *video++ = diff; 
#endif 
    } 
   } 
 } 
 fclose( file1 ); 
 fclose( file2 ); 
 if ( !batch ) { 
  getch(); 
  rin.h.ah = 0; 
  rin.h.al = 3; 
  int86( 0x10, &rin, &rout ); 
 } 
 error /= 320.0 * 200.0; 
 printf( "RMS error between %s and %s is %lf\n", 
  argv[ 1 ], argv[ 2 ], sqrt( error ) ); 
  return 0; 
 } 
/************************** End of GSDIFF.C **************************/ 
 



Some Compression Results 

The disk included with this book contains five grey-scale files to experiment with. Some 
of the results of compressing these files using the DCT program is shown in Figure 11.14.  

 
Figure 11.14  Compression results 

On most of the images, compression quality figures of five or lower produce a slight loss 
of resolution, but no significant loss of picture quality. Once the quality factor gets above 
five, visible artifacts of the compression process start to become visible as “blocking” of 
the image.  

Figure 11.15 shows a few images of CHEETAH.GS after going through a compression 
cycle. The first few images look fairly good. In fact, it is hard to spot much of a 
difference. Viewing the images one immediately after the other using GS.EXE will 



clearly show that there have been changes, but they are not glaring differences. At quality 
5, close inspection shows a few areas where the compression is clearly starting to cause 
picture quality to slip. The images with quality factors 10, 15, and 20 show clear 
degradation. 

 
CHEETAH.GS Original Image 

 
Qaulity = 1 

 
Qaulity = 2 

 
Qaulity = 3 

 
Qaulity = 5 

 
Qaulity = 10 

 
Qaulity = 15 



 
Qaulity = 25 

Figure 11.15 CHEETAH.GS after a compression cycle. 

The compression results achieved from these experiments are quite impressive. In most 
cases, images can be compressed up to about 85 percent without losing much picture 
quality. Better compression than this could be expected from the JPEG algorithm, since it 
adds a Huffman coding stage which DCT.C lacks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

Chapter 12 
An Archiving Package  
Programmers and users are perhaps most frequently exposed directly to data compression 
through the use of an archiving program. In the MS-DOS world, the use of archiving 
packages is ubiquitous, with the distribution of some packages fast approaching the 
saturation point. Programs such as PKZIP and ARJ that are distributed through non-
commercial channels tend to blanket the world of “power users,” with new releases 
getting world-wide distribution in a matter of only days.  

Because data compression is a competitive field, these programs tend to have very good 
performance characteristics, having both high throughput and tight compression ratios. 
They tend to do their jobs well. 

But for the programmer, these data-compression programs are solely lacking in one 
respect: their handling of source code. While it’s nice to be able to invoke PAK or ARC 
from the MS-DOS command line, that doesn’t help the programmer who wants to 
compress all of the on-line help screens in his new spreadsheet program. It would be 
somewhat impractical for his program to have to spawn a copy of PKUNZIP every time a 
new help screen needed to be accessed. 

This chapter presents a solution to such dilemmas by showing you how to create a simple, 
stripped-down version of an archiving program. While space limitations in the book 
prevent this program from being a match for commercial programs, a good programmer 
armed with the techniques found in this book should be able to enhance this program to 
make it as useful as commercial equivalents. 

CAR and CARMAN 

This chapter deals with two topics: Compressed Archive files and the program used to 
maintain them. Compressed archive files conventionally have a file extension of “.CAR,” 
and will be referred to as CAR files. The CAR file Manager will be named CARMAN.  

CARMAN is a stand alone program designed to manipulate CAR files. It has a fairly 
simple set of commands, and runs using command-line mode. CARMAN’s real strength 
lies in either its extension with more powerful compression techniques or more detailed 
file data, or the inclusion of portions of its code into other programs. 



The CARMAN Command Set 

Running CARMAN with no arguments gives a brief help screen showing the usage of the 
program, as shown in Figure 12.1.  

 
Figure 12.1  The CARMAN Help Screen 

Every CARMAN operation has two basic requirements. First, it must have a single letter 
command and, second, it must have the name of a CAR file. A brief synopsis of the 
commands follows.  

Add files:  This command is used to add new files to an archive, which may 
or may not already exist. Wild cards on the command line will be 
expanded under MS-DOS. Full path names can be used to specify 
input files, but CAR will strip the path components before storing 
the files. If the CAR file already exists, and a file to be added 
already exists in the archive, the new version will replace the old.  

Xtract files:  This command extracts files from the archive and stores them in 
the current directory. If no file names are listed on the command 
line all files are extracted from the archive.  

Replace files:  This command attempts to replace all of the named archive files 
with a new version from the current directory. If a specified file 
exists in the archive but not in the current directory, a warning 
message is printed.  

Delete files:  The named files are deleted from the CAR file.  
Print files:  The specified files are copied to stdout. If no files are named, all 

files will be extracted.  
Test files:  The specified files are tested to be sure they can be properly 

extracted, and that the resulting CRC value will be correct.  
List files:  The statistics for the specified files are listed on stdout. If no file 

names are specified, all files are listed. A typical listing is shown 
next.  



 
Figure 12.2  CARMAN List Command Output 

As can be seen from this listing, the compression method employed in CARMAN is 
LZSS, with the compression code being nearly identical to that shown in Chapter 8. Files 
that could not be compressed to less than their original size will instead be stored in 
uncompressed format.  

While LZSS does not offer the tightest compression possible, it does provide adequate 
performance. In addition, it has one unique advantage: its expansion speed will meet or 
exceed that of nearly any compression program available. So applications that need to 
decompress frequently may find LZSS to be the algorithm of choice. 

The CAR File 

The structure of a CAR file is very simple: it simply consists of a sequential list of file 
header blocks followed by file data. This sequence repeats indefinitely until a special 
header with a null file name is encountered. An illustration of this structure is shown in 
Figure 12.3.  

 
Figure 12.3  The structure of a CAR file. 

A sequential structure like this has both advantages and disadvantages. The sequential 
nature of the data means that both searches through and updates of the archive are not 
done using a random access method. Instead, linear searches and copies are used. Even 
worse, any time files in the archive are modified, it means the entire archive has to be 



copied from the original to a new version of the file. These disadvantages are outweighed 
by the simplicity this technique offers. Good reliable code can easily be written to 
support this storage method. In fact, most popular archiving programs use a nearly 
identical format.  

The Header 

In the CAR format, the header for each file contains everything we know about the file. 
Thus, selecting what goes in the header and what doesn’t is fairly important. CARMAN 
uses a fairly stripped down set of information in the header file, with a C structure as 
follows:  

   typedef struct header { 
    char file_name[ FILENAME_MAX ]; 
    char compression_method; 
    unsigned long original_size; 
    unsigned long compressed_size; 
    unsigned long original_crc; 
    unsigned long header_crc; 
   } HEADER; 

Most of the information in the header is self explanatory, particularly in terms of how it is 
used a C program. The place where the header information gets a little confusing is in the 
process of storing or reading it to/from a CAR file.  

Storing the Header 

To make CAR files portable across different systems and architectures, you need to take 
care when writing data to files. Conventionally, if we were to write this structure out to a 
file, we might use a line of code that looks like this:  

   fwrite( header, sizeof( HEADER ), 1, outfile ); 

This writes a binary image of the header data directly out to the file, so that can be easily 
read in using an equivalent fread() statement.  

There are two potential problems that crop up when writing data out this way. The first 
relates to the packing of structures. Different C compilers will pack structure elements in 
different fashions. For example, we have a single char element as the second element of 
the header array shown above. Since the next element is a long integer, and MS-DOS 
compiler might put in three bytes of padding so that the long element is aligned on a four-
byte boundary. Generally, this is done to generate faster, more efficient code. (Many 
CPUs tend to work better with data aligned on certain boundaries.) A different compiler 
on a different machine might not insert any padding, or might use an eight-byte boundary. 

When structures are packed differently, we can no longer count on portability between 
binary files generated using fwrite() calls such as the one shown above. However, it 
would seem that this would be a relatively easy problem to overcome. Instead of writing 



out the structure as a single entity, we could just store it one element at a time, which 
would guarantee that no packing bytes were inadvertently added to our output. 

This solution runs afoul of our second portability problem. Unfortunately, we cannot be 
sure that different computers will store identical data elements using the same structure. 
For example, a long integer with the hex value 0x12345678L would be stored in the 
following manner on an Intel 8086 machine: 

Address  Value  
0000  78  
0001  56  
0002  34  
0003  12  

The same long integer stored on machine based on the Motorola 68000 architecture 
would have the bytes stored in exactly the reverse order! These differences result from 
decisions the hardware designers made long ago, for better or worse, and we all have to 
live with the consequences. In this case, the consequence is a problem with binary file 
interchange.  

The solution is to take control of the binary file format at the lowest level. Instead of 
trying to write out short and long integers in one fell swoop, we write them out a byte at a 
time, using the ordering that we select. This way we should be able to store and retrieve 
data items so that our CAR files can be ported across various systems without worrying 
about incompatibilities. 

When reading and writing the headers, you would first pack and unpack the short and 
long integer data in the header file into a character array, using a pair of utility routines. 
We arbitrarily pack the data with the least significant bytes first, although it could just as 
easily be done in the other order. The routines that do the packing follow: 

   void PackUnsignedData( number_of_bytes, number, buffer ) 
   int number_of_bytes; 
   unsigned long number; 
   unsigned char *buffer; 
   { 
 
    while ( number_of_bytes-- > 0 ) { 
     *buffer++ = ( unsigned char ) number & Oxff; 
     number >>= 8; 
    } 
   } 
 
   unsigned long UnpackUnsignedData( number_of_bytes, buffer 
   int number_of_bytes; 



   unsigned char *buffer; 
   { 
    unsigned long result; 
    int shift_count; 
 
    result = 0; 
    shift_count = 0; 
    while ( number_of_bytes-- > 0 ) { 
     result |= (unsigned long) *buffer++ << shift_count; 
     shift_count += 8; 
    } 
    return( result ); 
   } 

Given these packing and unpacking routines, reading and storing the header files is 
simple. The process is accomplished for the file I/O using an intermediate character array. 
The actual header data is packed and unpacked to and from the array.  

void WriteFileHeader() 
{ 
  unsigned char header_data[ 17 ]; 
  int i; 
 
  for ( i = 0 ; ; ) { 
   putc( Header.file_name[ i ], OutputCarFile ); 
   if ( Header.file_name[ i++ ] == '\O' ) 
    break; 
  } 
 
  Header.header_crc = CalculateBlockCRC32( i, CRC_MASK, 
                          Header.file_name ); 
  PackUnsignedData( 1, (long) 
            Header.compression_method, header_data + 0 ); 
  PackUnsignedData( 4, Header.original_size, header_data + 1 ); 
  PackUnsignedData( 4, Header.compressed_size, header_data + 5 ); 
  PackUnsignedData( 4, Header.original_crc, header_data + 9 ); 
  Header.header_crc = CalculateBlockCRC32( 13, Header.header_crc, 
       header_data ); 
  Header.header_crc ^= CRC_MASK; 
  PackUnsignedData( 4, Header.header_crc, header_data + 13 ); 
  fwrite( header_data, 1, 17, OutputCarFile ); 
} 

The routine to write the file header out to the CAR file is somewhat simpler than the 
routine to read the same data, since it doesn’t have to check for some of the possible error 
conditions. The first part of a header consists of the name of the compressed file, stored 
with a null terminator character. No special care needs to be taken when writing out the 
file name, since eight-bit ASCII characters are portable across all of the systems toward 
which CARMAN is targeted.  

The remaining elements of the header are packed, one by one, into a character array using 
the PackUnsignedData() routine. Once they have all been properly packed, they can be 
written out with a call to fwrite(), with everything being in a known state. 



The Header CRC 

One of the header elements written out by WriteFileHeader() is called “header_crc.” The 
header CRC is a 32-bit number generated using the data in the header structure, and used 
as a checksum. The CRC is generated using the CCITT-32 formula, which is the same 
formula used by many other archiving programs, such as PKZIP and ARJ. It provides us 
with a reasonably high probability of detecting errors in the header.  

The reason for creating a CRC checksum for the header data is to provide an additional 
check for validity of a CAR file. If for some reason one of the data elements in the header 
file was inadvertently modified, it could lead to to disastrous results either during 
decompression, or later when attempting to use erroneous file data. 

int ReadFileHeader() 
{ 
 
 unsigned char header_data[ 17 ]; 
 unsigned long header_crc; 
 int i; 
 int c; 
 
 for ( i = 0 ; ; ) { 
  c = getc( InputCarFile ); 
  Header.file_name[ i ] = (char) c; 
  if ( c == '\0' ) 
   break; 
  if ( ++i == FILENAME_MAX ) 
   FatalError( "File name exceeded maximum in header" ); 
 } 
 if ( i == 0 ) 
  return( 0 ); 
  header_crc= CalculateBlockCRC32( i + 1, CRC_MASK, Header.file_name ); 
  fread( header_data, 1, 17, InputCarFile ); 
 
  Header.compression_method= (char) 
               UnpackUnsignedData( 1, header_data + 0); 
  Header.original_size = UnpackUnsignedData(4, header_data + 1); 
  Header.compressed_size = UnpackUnsignedData(4, header_data + 5); 
  Header.original_crc = UnpackUnsignedData(4, header_data + 9); 
  Header.header_crc = UnpackUnsignedData(4, header_data + 13); 
  header_crc = CalculatedBlockCRC32( 13, header_crc, header_data ); 
  header_crc ^=CRC_MASK; 
  if ( Header.header_crc!= header_crc ) 
    FatalError( "Header checksum error for file %s", Header.file_name ); 
  return( 1 ); 
} 

Reading the file header is essentially the reverse procedure of writing it out—with a 
couple of twists. During the process of reading in the file name, we need to check for a 
couple of different possibilities. First, if this is the last header in a CAR file, it will have a 
file name length of 0. If this is the case, we immediately return with a failure indication, 
so the calling routine will know that we have reached the end of the input CAR file.  



A second possibility is that the file name may exceed the storage allocated for in the 
header structure. In that case, a fatal error exit is taken. 

After all of the header data has been read in, we perform one last validity check by 
comparing the calculated CRC for the header file with the CRC that was stored in the 
CAR file. In case of a mismatch, we once again take the fatal error exit. 

Command-Line Processing 

Once we have the ability to read in a header from a CAR file, we have the capability to 
list the archive. A simple loop like this would be enough to do it:  

  while ( ReadFileHeader() != 0 ) { 
   ListCarFileEntry(); 
   fseek( input, header.compressed_size, SEEK_CUR ); 
  } 

All that is needed to skip over all of the compressed data for a given file is the fseek() 
statement, since we know the size of the compressed data. This is the mechanism used to 
work our way through the CAR file when performing any type of processing. We start 
with the very first file, and work our way from header to header, processing each file as 
needed. At no time does CARMAN ever back up through an input archive, or try to seek 
ahead past the next file.  

Now that we have the ability to start doing something with the CAR file, it is time to start 
putting the other pieces of the program together. The next logical step is to start adding 
the ability to handle the command line. 

There are three components to the CARMAN command line. First, the command is one 
of seven single letters discussed previously. Second is the name of the CAR file. Finally 
comes the optional list of file names. An initial call to ParseArguments() checks for the 
validity of the first command, and performs some checking on the next two. 

int ParseArguments( argc, argv ) 
int argc; 
char *argv[]; 
{ 
  int command; 
 
  if ( argc < 3 || strlen( argv[ 1 ] ) > 1 ) 
   UsageExit(); 
  switch( command = toupper( argv[ 1 ][ 0 ] ) ) { 
  case 'X': 
   fprintf( stderr, "Extracting files\n"); 
   break; 
  case 'R' : 
   fprintf( stderr, "Replacing files\n" ); 
   break; 
  case 'P' : 
   fprintf( stderr, "Print files to stdout\n" ); 



   break; 
  case 'T' : 
   fprint( stderr, "Testing integrity of files\n" ); 
   break; 
  case 'L' : 
   fprintf( stderr, "Listing archive contents\n" ); 
   break; 
  case 'A' : 
   if ( argc <= 3) 
    UsageExit(); 
   fprintf( stderr, "Adding/replacing files to archive\n" ); 
   break; 
  case 'D' : 
   if ( argc <= 3 ) 
    UsageExit(); 
   fprintf( stderr, "Deleting files from archive\n" ); 
   break; 
  default : 
   UsageExit(); 
 }; 
 return( command ); 
} 

The first step in parsing the command line is to make sure that are at least three 
arguments on the command line: the command name (CARMAN), a single letter 
command, and a CAR file name. The next step is to check the command letter for validity, 
to be sure it is one of the legally defined CARMAN commands. As the command letter is 
determined, a short message is printed to indicate that CARMAN has acknowledged the 
command. Finally, for two particular cases, CARMAN insists that specific file names be 
included on the command line. For most of the CARMAN commands, specifying no file 
names on the command line is defined as the equivalent of using the wildcard argument 
“*”, (or “*.*”, the MS-DOS equivalent). That means that “CARMAN I backup.car” will 
list all the files in the backup.car archive.  

For the Add and Delete commands, this default mode of operation is probably a little too 
dangerous, so it results in an error message. If the user wants to add every file in the 
current directory to a CAR file, it will be necessary to specify “*” or “*.*” on the 
command line, which should not be too much of an inconvenience. 

Generating the File List 

One of the basic requirements of CARMAN is that it be able to handle lists of files, so 
that it can perform operations on select groups of files. Every one of the seven CARMAN 
commands accepts a list of files as an argument, so we need to have a general purpose 
way to build and manage a list of files. The list function should also be able to 
accommodate at least some level of wild card pattern matching as well.  

Wild card matching needs to be done a little differently under MS-DOS and UNIX. First 
of all, there are actually two types of wild card matching taking place in CARMAN. File 
specifications on the command line with the ‘Add’ command, including wild cards, 



specify external files that are going to be added to the CAR file. File specifications for all 
of the other commands refer to files stored inside the CAR file. Thus we have to handle 
these two types of file lists using slightly different methods. 

To complicate further, UNIX and MS-DOS differ significantly in the way their command 
lines handle wild card file specifications. Under either operating system, if we want to 
add all the C files in a directory to an archive, we would type a similar command: 

carman a c_files.car *.c 

Under UNIX, the command interpreter, or shell program, expands the list of wild card 
file names before the program ever sees it. This means that by the time CARMAN is 
invoked, it is presented with a command line that might look something like this:  

carman a c_files.car test.c io.c foo.c bar.c 

This is one of the nice features of UNIX; an application program doesn’t have to worry 
about wild card expansion of files from the command line because the shell takes care of 
the work.  

Under MS-DOS, matters are a little more complicated. Wild card expansion is thought of 
as being the province of an application program, not the command-line interpreter. So 
code that builds the file name list has to perform the expansion manually using C run-
time library functions. Even worse, the function names and structure definitions used to 
expand wild card listings have not been standardized among compiler vendors, so that 
each new compiler needs a slightly different implementation. 

In CARMAN, the list of the file names is found in an array called FileList[]. FileList is 
an array of character pointers which is set up via a routine called BuildFileList(). 
BuildFileList() is called right after the command line is parsed, and is passed a list of 
command-line arguments, along with a count. 

BuildFileList() normally just copies the arguments passed to it into the FileList[] array. If 
there are no command-line arguments, FileList[0] is set to ‘*’, so that all file names in the 
archive will be matched as they are processed. This has the effect of converting a 
command like “CARMAN L TEST.CAR” to “CARMAN L TEST.CAR *”. 

BuildFileList() changes its mode of operation if the user has specified that the command 
is ‘A,’ to add files, and the operating system is MS-DOS. Under these circumstances, a 
special routine is called to expand a potential wild-card file specification into a list of file 
names, with the results all being stored in the FileList[]. 

void BuildFileList( argc, argv, command ) 
int argc; 
char *argv[]; 
int command; 
{ 
 int i; 



 int count; 
 count = 0; 
 if ( argc == 0 ) 
    FileList[ count++ ] = "*"; 
 else { 
    for ( i = 0 ; < argc ; i++ ) { 
#ifdef MSDOS 
      if ( command == 'A' ) 
       count = ExpandAndMassageMSDOSFileNames (count, argv[ i ]); 
      else 
       MassageMSDOSFileName( count++, argv[ i ] ); 
#endif 
#ifndef MSDOS 
  FileList[ count ] = malloc( strlen( argv[ i ] ) + 2); 
  if ( FileList[ count ] == NULL ) 
    FatalError( "Ran out of memory storing file names" ); 
  strcpy( FileList[ count++ ], argv[ i ]; 
#endif 
  if ( count > 99 ) 
    FatalError( "Too many file names" ); 
  } 
 } 
 FileList[ count ] = NULL; 
} 

In addition, a special routine called MassageMSDOSFileName() is called to normalize all 
MS-DOS file names. MS-DOS has a couple of complications in its file system. First of 
all, file names are case insensitive, meaning that “FOO.BAR” and “foo.bar” both refer to 
the same file, despite the fact that their names are different. Secondly, the 8+3 file 
naming convention means that “FOO” and “FOO.” both refer to the same file, even 
though one has a trailing ‘.’ character and the other doesn’t.  

Massage MSDOSFileName() gets around this problem by performing two operations on 
file names. First of all, uppercase characters in file names on the command line are all 
converted to lowercase, to avoid ambiguities created by case mismatches. Secondly, any 
file that doesn’t have an extension or a ‘.’ in the name has a ‘.’ character appended to the 
end of its name. Note that if the file name contains a ‘*’ or ‘?’ character, meaning it is a 
wild card, the ‘.’ character is not appended to a file name with no extension. 

Note that not all MS-DOS compilers will define the manifest constant MSDOS. If your 
compiler doesn’t, you may need to edit the source files for CARMAN.C.  

void MassageMSDOSFileName( count, file ) 
int count; 
char *file; 
{ 
 int i; 
 char *p; 
 
 FileList[ count ] = malloc( strlen( file ) + 2 ); 
 if ( FileList[ count ] == NULL ) 
  FatalError( "Ran out of memory storing file names" ); 
 strcpy( FileList[ count ], file ); 



 for ( i = 0 ; FileList[ count ][ i ] != '\0' ; i++ ) 
  FileList[ count ][ i ] = tolower( FileList[ count ][ i ] ); 
 if ( strpbrk( FileList[ count ], "*?" ) == NULL ) } 
   p = strrchr( FileList[ count ], '\\' ); 
   if ( p == NULL ) 
     p = FileList[ count ]; 
   if ( strrchr( p, '.' ) == NULL ) 
        strcat( FileList[ count ], "." ); 
  } 
 } 
 
int ExpandAndMassageMSDOSFileNames( count, wild_name ) 
int count; 
char *wild_name; 
{ 
 int done; 
 DIR_STRUCT file_info_block 
 char *leading_path; 
 char *file_name; 
 
 char *p; 
 
 leading_path = malloc( strlen( wild_name ) + 1 ); 
 file_name = malloc( strlen(wild_name ) + 13 ); 
 if ( leading_path == NULL || file_name == NULL ) 
  FatalError( "Ran out of memory storing file names" ); 
 strcpy( leading_path, wild_name ); 
    p = strrchr( leading_path, '\\' ); 
 if ( p != NULL ) 
    p[ 1 ] = '\0'; 
 else { 
   p = strrchr( leading_path, ':' ); 
  if ( p != NULL ) 
    p[ 1 ] = '\0'; 
  else 
    leading_path[ 0 ] = '\0'; 
 } 
 done = FIND_FIRST( wild_name, &file_info_block, 0); 
 while ( !done ) { 
  strcpy( file_name, leading_path ); 
  strcat( file_name, file_info_block, DIR_FILE_NAME ); 
  MassageMSDOSFileName( count++, file_name ); 
  done = FINDNEXT( &file_info_block ); 
  if ( count > 99 ) 
   FatalError( "Too many file names" ); 
 } 
 free( leading_path ); 
 free( file_name ); 
 return( count ); 
} 

The code shown here for expanding wild cards words with most popular MS-DOS 
compilers. Conditional complication is used to define the macros in slightly different 
ways depending on which compiler is being used. Check the complete listing at the end 
of this chapter for details on how this is accomplished.  



Opening the Archive Files 

The final step before you can begin processing the CAR file is opening the input and 
output CAR files. This routine is complicated by several possible conditions. In general, a 
routine that modifies the archive will have both an input and an output CAR file. This 
includes the ‘Add,’ ‘Replace,’ and ‘Delete’ commands. These commands operate by 
reading in and processing the CAR file while copying files to the output file.  

The remaining processing commands don’t actually modify the input CAR file, so they 
don’t have to open an OutputFile. In addition, if the command is to ‘Add’ files to the 
archive, an input file may not exist, in which case a new one has to be created. The 
OpenArchiveFiles() command manages all these possibilities. 

void OpenArchiveFiles( name, command ) 
char *name; 
int command; 
{ 
 char *s; 
 int i; 
 
 strncpy( CarFileName, name, FILENAME_MAX - 1 ); 
 CarFileName[ FILENAME_MAX - 1 ] = '\0'; 
 InputCarFile = fopen( CarFileName, "rb" ); 
 if ( InputCarFile == NULL ) { 
#ifdef MSDOS 
    s = strrchr( CarFileName, '\\' ); 
#else /* UNIX */ 
    s = strrchr( CarFileName, '/' ); 
#endif 
    if ( s == NULL ) 
     s = CarFileName; 
    if ( strrchr( s, '.' ) == NULL ) 
     if ( strlen( CarFileName ) < ( FILENAME_MAX - 4 ) ) { 
      strcat( CarFileName, ".car"); 
      InputCarFile = fopen( CarFileName, "rb" ); 
     } 
 } 
 if ( InputCarFile == NULL && command != 'A' ) 
  FatalError( "Can't open archive '%s'", CarFileName ); 
 if ( command == 'A' || command == 'R' || command == 'D' ) { 
  strcpy( TempFileName, CarFileName ); 
  s = strrchr( TempFileName, '.' ); 
  if ( s == NULL ) 
   s = TempFileName + strlen( TempFileName ); 
  for ( i = 0 ; i < 10 ; i++ ) { 
   sprintf( s, ".$$%d", i ); 
   if ( ( OutputCarFile = fopen( TempFileName, "r" ) ) == NULL ) 
    break; 
   fclose( OutputCarFile ); 
   OutputCarFile = NULL; 
   } 
   if ( i == 10 ) 
    FatalError( "Can't open temporary file %s", TempFileName ); 
   OutputCarFile = fopen( TempFileName, "wb" ); 



   if ( OutputCarFile == NULL ) 
    FatalError( "Can't open temporary file %s", TempFileName ); 
 }; 
 if ( InputCarFile != NULL ) 
  setvbuf( InputCarFile, NULL, _IOFBF, 8192 ); 
 if ( OutputCarFile != NULL ) 
  setvbuf( OutputCarFile, NULL, _IOFBF, 8192 ); 
} 

When an output file is created, it will be the file that eventually gets a copy of all the 
selected files from the input archive. Once all that processing is over, the input file can be 
deleted and the output file can be renamed to have the correct name. However, while 
CARMAN is still processing, the output file has to have a different name. In this case, we 
create a temporary file name based on the name of the CAR file. We do a limited amount 
of checking to try and create a name that isn’t already in use.  

One additional feature that CARMAN develops in this routine is the ability to 
automatically attempt to add a file extension to the archive name. If the input file name 
does not include an extension, OpenArchiveFiles() first tries to open it normally. If the 
file cannot be opened, OpenArchiveFiles() tries again with the “.CAR” extension 
appended to the file name. This lets the user type a command like “CARMAN L FILES” 
when the correct command might really be “CARMAN L FILES.CAR”. 

Finally, note that both files have big buffers set up using the setvbuf() command. This 
helps throughput, particularly when performing bulk copies of compressed files from the 
input archive to the output CAR file. 

The Main Processing Loop 

With these steps out of the way, CARMAN is ready to begin processing in earnest. The 
main processing loop is found in the routine called ProcessAllFilesInInputCar(). It sits in 
a big loop, finding files in the input CAR file, checking to see if they match up with any 
of the names in the file list, then deciding what to do based on the command.  

Before entering the main processing loop, CARMAN checks to see if the command given 
was to ‘Add’ files to the CAR file. If it was, these files all need to be inserted into the 
output CAR file before anything else happens. This is done in a routine called 
AddFileListToArchive(). This routine attempts to add every file name that was specified 
in the command line to the output CAR file. 

int AddFileListToArchive 
() 
{ 
 int i; 
 int j; 
 int skip; 
 char *s; 
 FILE *input_text_file; 
 



 for ( i = 0 ; FileList[ i ] != NULL ; i++ ) { 
  input_text_file = fopen( FileList[ i ], "rb" ); 
  if ( input_text_file == NULL ) 
   FatalError( "Could not open %s to add to CAR file", 
                         FileList[ i ] ); 
#ifdef MSDOS 
    s = strrchr( FileList[ i ], '\\' ); 
    if ( s == NULL ) 
     s = strrchr( FileList[ i ], ':' ); 
#endif 
#ifndef MSDOS /* Must be UNIX */ 
    s = strrchr( FileList[ i ], '/'); 
#endif 
    if ( s != NULL ) 
     s++; 
    else 
     s = FileList[ i ]; 
    skip = 0; 
    for ( j = 0; j < i ; j++ ) 
     if ( strcmp( s, FileList[ j ] ) == 0 ) { 
       fprintf( stderr, "Duplicate file name: %s", FileList[ i ] ); 
       fprintf( stderr, " Skipping this file...\n" ); 
       skip = 1; 
       break; 
      } 
    if ( s != FileList[ i ] { 
     for ( j = 0 ; s [ j ] != '\0' ; j++ ) 
      FileList[ i ][ j ] = s[ j ]; 
     FileList[ i ][ j ] = '\0'; 
    } 
    if ( !skip ) { 
      strcpy( Header.file_name, FileList[ i ]; 
      Insert( input_text_file, "Adding" ); 
    } else 
      fclose( input_text_file ); 
   } 
  return( i ); 
} 

Adding files to the archive has to take care of several things in order to accomplish its 
goal. First, it has to use the full path name specified on the command line to try to open 
the file to be added. Once the file is opened, however, the file name needs to be stripped 
of its path and drive component. CARMAN stores file names only, not leading drive or 
path definitions. Once the file name has been stripped down, a search is made to be sure 
that this is not a duplicate file name. Adding two files with the same name to a 
CARMAN file would be a bad idea. Finally, if everything went well, the Insert() routine 
is called to compress the file and place it in the output CAR file.  

Once any new files have been added, CARMAN enters the main processing loop, where 
most of the real work takes place. The main processing loop is fairly simple in structure. 
It simply reads in file header from the input file, then checks to see if the file appears in 
the FileList, saving the answer. Next, it enters a switch, and then performs processing on 



the input file based on the command type. Each command makes a different decision on 
what to do based on whether or not the file name appeared in the file list. 

Two commands used in the main processing loop require a small amount of setup. The 
‘Test’ and ‘Print’ commands actually act just like the ‘Xtract’ command, except that they 
direct their output to the null device and stdout, respectively. These output destinations 
are set up before the loop is entered. 

int ProcessAllFilesInInputCar( command, count ) 
int command; 
int count; 
{ 
 int matched; 
 FILE *input_text_file; 
 FILE *output_destination; 
 
 if ( command == 'P' ) 
  output_destination = stdout; 
 else if ( command == 'T' ) 
#ifdef MSDOS 
   output_destination = fopen( "NUL", "wb" ); 
#else 
   output_destination = fopen( "/dev/null", "wb" ); 
#endif 
 else 
  output_destination = NULL; 
/* 
* This is the loop where it all happens. I read in the header for 
* each file in the input CAR, then see if it matches any of the file 
* and wild card specifications in the FileList created earlier. That 
* information, combined with the command, tells me what I need to 
* know in order to process the file. Note that if the 'Addfiles' 
command 
* is being executed, the InputCarFile will be NULL, so this loop 
* can be safety skipped. 
*/ 
 while ( InputCarFile != NULL && ReadFileHeader() != 0 ) { 
  matched = SearchFileList( Header.file_name ); 
  switch ( command ) { 
   case 'D' : 
    if ( matched ) { 
     SkipOverFileFromInputCar(); 
     count++; 
    } else 
     CopyFileFromInputCar(); 
    break; 
   case 'A' : 
    if ( matched ) 
     SkipOverFileFromInputCar(); 
    else 
     CopyFileFromInputCar(); 
    break; 
   case 'L' : 
    if ( matched ) { 
     ListCarFileEntry(); 



     count++; 
    } 
    SkipOverFileFromInputCar(); 
    break; 
   case 'P' : 
   case 'X' : 
   case 'T' : 
    if ( matched ) { 
     Extract( output_destination ); 
     count++; 
    } else 
     SkipOverFileFromInputCar(); 
    break; 
   case 'R' : 
    if ( matched ) { 
     input_text_file = fopen( Header.file_name, "rb" ); 
     if ( input_text_file == NULL ) { 
      fprintf( stderr, "Could not find %s", Header.file_name ); 
      fprintf( stderr, " for replacement, skipping\n" ); 
      CopyFileFromInputCar(); 
     } else { 
      SkipOverFileFromInputCar(); 
      Insert( input_text_file, Replacing" ); 
      count++; 
      fclose( input_text_file ); 
     } 
    } else 
     CopyFileFromInputCar(); 
    break; 
   } 
 } 
 return( count ); 
} 

The processing loop starts off by reading in the next available header file from the input 
CAR file. If we are at the end of file, this operation returns a 0 and we exit. Otherwise, 
we call SearchFileList(), which looks for a match of the file name in the FileList[] array, 
including wild card matches. The result of that search is stored in the match variable, at 
which point the switch statement is started. The actions taken in the switch depend on the 
command give on the command line:  

Delete:  If match is true, it means the user wants to delete this file from the 
CAR archive. In this case, the file is skipped over with a call to 
SkipOverFileFromInputCar(). Otherwise, the file is copied to the 
output CAR file with a call to CopyFileFromInputCar().  

Add:  If match is true, means that one of the files that was added to the 
output CAR file at the start of the program also appears in input 
CAR file. When this is the case, we have to skip over the file, 
since it has been superseded. If no match is found, the file is 
copied to the output CAR file.  

List:  If a match is found, the file statistics are listed on stdout. No 
output file is being created by this command, so after it is listed, it 



is automatically skipped.  

Print: 
Test: 
Xtract:  

If a match is found, it means this file has to be extracted to one of 
the possible destinations. For the Print command, it goes to stdout. 
For Test, it goes to the null device, and for Xtract, to a file that is 
created with the appropriate name. If no match was found, the file 
is skipped.  

Replace:  If a match is found, it means we need to replace the version of the 
file found in the archive with a file of the same name in the current 
directory. If that file is found, it is Inserted into the output file, and 
the current input file is skipped. If no match is found, or the file 
cannot be opened, the file in the input CAR file is copied to the 
output CAR file.  

Once all of these operations are complete, a count of matched files is returned to the 
calling routine, for display when the program exits.  

Skipping/Copying Input File 

The main processing loop only has one of three choices to take to go past the current file 
in the input CAR file. The first two are the skip and copy routines. One of these copies 
the current file in the input CAR to the output CAR file. The second routine skips over 
the file and moves on to the next header.  

The skip operation was discussed previously, and is quite simple, since we have the exact 
size in bytes of the compressed file stored in the header. All the program has to do is 
advance that number of bytes forward in the input file. Once this is done, the file is lost to 
the output file, so this is only done when the file is to be Deleted or Replaced (including 
replacement with an Add command). 

void SkipOverFileFromInputCar() 
{ 
   fseek( InputCarFile, Header.compressed_size, SEEK_CUR ); 
} 
 
void CopyfileFromInputCar() 
{ 
 char buffer[ 256 ]; 
 unsigned int count; 
 
 WriteFileHeader(); 
 while ( Header.compressed_size != 0 ) { 
  if ( Header.compressed_size < 256 ) 
   count = (int) Header.compressed_size; 
  else 
   count = 256; 
  if ( fread( buffer, 1, count, InputCarFile ) != count ) 
   FatalError( "Error reading input file %s", Header.file_name ); 
  Header.compressed_size -= count; 
  if ( fwrite( buffer, 1, count, OutputCarFile) != count ) 



   FatalError( "Error writing to output CAR file" ); 
 } 
} 

Copying the file from the input CAR file to the output CAR file is the “normal” mode of 
operation, where the contents of the input file are not lost. This is only marginally more 
complicated than the skip routine. All we need to do here is read in the predetermined 
number of bytes a block at a time, and write them out to the output file, checking for 
errors along the way.  

Once the copy is complete, the input file pointer is left pointing at the next file header in 
the input CAR file, and the program is ready to start back at the top of the loop. 

File Insertion 

The Insertion routine is called to insert an external file into the output CAR file. The 
insertion routine makes a first attempt to compress the file using the LZSS compression 
routine. If that routine fails, a straight storage routine is called instead. Since we don’t 
know what the size of the compressed file will be until after the compression actually 
takes place, Insert() has to back up and rewrite the header after the compression is finally 
successful. In addition, the compression method is stored in the header file as well. A 
compression method of 1 is used for normal storage, 2 for LZSS compression. Clearly it 
would be relatively simple to add new forms of compression by adding new numbers to 
the table. All that would be needed then is additional code in the Extract() routine to 
support the new compression method.  

void Insert( input_text_file, operation ) 
FILE *input_text_file; 
char *operation; 
{ 
 long saved_position_of_header; 
 long saved_position_of_file; 
 
 fprintf( stderr, "%s %-20s", operation, Header.file_name ); 
 saved_position_of_header = ftell( OutputCarFile ); 
 Header.compression_method = 2; 
 WriteFileHeader(); 
 saved_position_of_file = ftell(OutputCarFile); 
 fseek( input_text_file, OL, SEEK_END ); 
 Header.original_size = ftell( input_text_file ); 
 fseek( input_text_file, OL, SEEK_SET ); 
 
 if ( !LZSSCompress( input_text_file ) ) { 
  Header.compression_method = 1; 
  fseek( OutputCarFile, saved_position_of_file, SEEK_SET ); 
  rewind( input_text_file ); 
  Store( input_text_file ); 
 } 
 fclose( input_text_file ); 
 fseek( OutputCarFile, saved_position_of_header, SEEK_SET ); 
 WriteFileHeader(); 



 fseek( OutputCarFile, OL, SEEK_END ); 
 printf( " %d%%\n", RatioInPercent( Header.compressed_size, 
                     Header.original_size ) ); 
} 

File Extraction 

The extraction routine in some ways is simpler than the Insert() routine. It doesn’t have to 
deal with the possibility that the LZSS compression routine failed to compress. Instead, it 
just calls the appropriate routine based on the compression method stored in the header 
file. However, it does have a few extra jobs to deal with.  

First of all, Extract can be called with a predefined destination FILE pointer. This occurs 
when the Print or Test commands are being executed. Print just extracts to stdout, and 
Test extracts to the null device, or the “bit bucket”. When this is the case, Extract() 
doesn’t have to open a file to store the output. 

In the case where Extract() is being called based on the Xtract command, it has to open 
the output file, check to make sure that goes okay, then close the file after the expansion 
takes place. 

In all cases, Extract() has to check the CRC of the output file after the expansion routine 
has completed. When using the Test command, this is the way CARMAN verifies the 
integrity of the CAR file. 

void Extract( destination ) 
FILE *destination; 
{ 
 FILE *output_text_file; 
 unsigned long crc; 
 
  int error; 
 
  fprintf( stderr, "%-20s ", Header.file_name ); 
  error = 0; 
  if ( destination == NULL ) { 
   if ( ( output_text_file = fopen(Header.file_name, "wb") 
                            ) == NULL ) { 
    fprintf( stderr, "Can't open %s\n", Header.file_name ); 
    fprintf( stderr, "Not extracted\n" ); 
    SkipOverFileFromInputCar(); 
    return; 
   } 
  } else 
   output_text_file = destination; 
  switch( Header.compression_method ) { 
   case 1 : 
    crc = Unstore( output_text_file ); 
    break; 
   case 2 : 
    crc = LZSSExpand( output_text_file ); 
    break; 



   default : 
    fprintf( stderr, "Unknown method: %c\n", 
         Header.compression_method ); 
    SkipOverFileFromInputCar(); 
    error = 1; 
    crc = Header.original_crc; 
    break; 
  } 
  if ( crc != Header.original_crc ) { 
    fprintf( stderr, "CRC error reading data\n" ); 
    error = 1; 
  } 
  if ( destination == NULL ) { 
   fclose( output_text_file ); 
   if ( error ) 
  #ifdef __STDC__ 
        remove( Header.file_name ); 
  #else 
        unlink( Header.file_name ); 
  #endif 
  } 
  if ( !error ) 
   fprintf (stderr, " OK\n" ); 
} 

Cleanup 

The final job left to CARMAN after making its way through the main processing loop is 
to clean up the workspace used by the program. The first step is to write out the special 
EOF header to the output CAR file. This is done using a dedicated routine called 
WriteEndOfCarHeader(), which simply writes a zero length file name to the header file.  

Next, the output CAR file is closed and checked for errors. At this point, the output CAR 
file has been completely processed and is ready to replace the input file. In order to do 
this, the input file is deleted, and the output file is renamed to have the original archive 
name. This takes slightly different code under UNIX than MS-DOS, but it is relatively 
straightforward. 

The Code 

A complete listing of the CARMAN program follows, including sections that have only 
been lightly touched on in this chapter. The LZSS compression code is nearly identical to 
that shown earlier in Chapter 8, with a slightly modified I/O system.  

Programmers wishing to compile this under MS-DOS are advised to pay close attention 
to those portions of the code that are surrounded by #ifdef MSDOS sections. These 
portions may need slight modifications to work with different MSDOS compilers, but the 
modifications should only consist of renamed functions and structures. The actual flow of 
control inside the program should be identical. 

/**************************** Start of CARMAN.C *********************** 



* 
* This is the main program for the simple Compressed Archive Manager. 
* This program can be used to add, delete, extract, or list the files 
* in a CAR archive. The code here should run under standard ANSI 
* compilers under MS-DOS (with ANSI mode selected) or K&R compilers 
* under UNIX. The code uses an LZSS compression algorithm identical to 
* that used earlier in the book. 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <ctype.h> 
#ifdef __STDC__ 
#include <stdarg.h> 
#else 
#include <varargs.h> 
#endif 
 
#ifdef __STDC__ 
 /* All Borland C/C++ versions */ 
 #ifdef __TURBOC__ 
   #define MSDOS 1 
   #include <io.h> 
   #include <dir.h> 
   #define DIR_STRUCT struct ffblk 
   #define FIND_FIRST(n, d, a ) findfirst( n, d, a ) 
   #define FIND_NEXT findnext 
   #define DIR_FILE_NAME ff_name 
#endif 
 /*Microsoft, Watcom, Zortech */ 
#if defined( M__186 ) || defined ( __ZTC__ ) || defined ( __TSC__ ) 
 #define MSDOS 1 
 #include <dos.h> 
 #define DIR_STRUCT struct find_t 
 #define FIND_FIRST( n, d, a) _dos_findfirst( n, a, d ) 
 #define FIND_NEXT _dos_findnext 
 #define DIR_FILE_NAME name 
 #endif 
#endif 
/* 
* A few constants used throughout the program. 
*/ 
 
#define BASE_HEADER_SIZE 19 
#define CRC_MASK 0xFFFFFFFFL 
#define CRC32_POLYNOMIAL 0xEDB88320L 
 
/* 
* The only data structure used inside the CAR file is the header block. 
* Each file is preceded by a header, stored in a portable format. 
* The header is read into and out of the structure defined below. 
* The CAR file is structured as a series of header/data sequences, with 
* the EOF being denoted as a header with a file name length of 0. Note 
* that the length of each header will vary depending on the length of 
* the file name. 
*/ 



#ifndef FILENAME_MAX 
#define FILENAME_MAX 128 
#endif 
 
typedef struct header { 
 char file_name[ FILENAME_MAX ]; 
 char compression_method; 
 unsigned long original_size; 
 unsigned long compressed_size; 
 unsigned long original_crc; 
 unsigned long header_crc; 
} HEADER; 
 
/* 
* Local function prototypes 
*/ 
 
#ifdef __STDC__ 
 
void FatalError( char *message, ... ); 
void BuildCRCTable( void ); 
unsigned long CalculateBlockCRC32( unsigned int count, unsigned long 
crc, 
                          void *buffer ); 
unsigned long UpdateCharacterCRC32( unsigned long crc, int c ); 
int ParseArguments( int argc, char *argv[] ); 
void UsageExit( void ); 
void OpenArchiveFiles( char *name, int command ); 
void BuildFileList( int argc, char *argv[], int command ); 
int ExpandAndMassageMSDOSFileNames( int count, char *wild_name ); 
void MassageMSDOSFileName( int count, char *file ); 
int AddFileListToArchive( void ); 
int ProcessAllFilesInInputCar( int command, int count ); 
int SearchFileList( char *file_name ); 
int WildCardMatch( char *s1, char *s2 ); 
void SkipOverFileFromInputCar( void ); 
void CopyFileFromInputCar( void ); 
void PrintListTitles( void ); 
void ListCarFileEntry( void ); 
int RatioInPercent( unsigned long compressed, unsigned long original ); 
int ReadFileHeader( void ); 
unsigned long UnpackUnsignedData( int number_of_bytes, 
                      unsigned char *buffer ); 
void WriteFileHeader( void ); 
void PackUnsignedData( int number_of_bytes, unsigned long number, 
                      unsigned char *buffer ); 
void WriteEndOfCarHeader( void ); 
void Insert( FILE *input_text_file, char *operation ); 
void Extract( FILE *destination ); 
int Store( FILE *input_text_file ); 
unsigned long Unstore( FILE *destination ); 
int LZSSCompress( FILE *input_text_file ); 
unsigned long LZSSExpand( FILE *destination ); 
 
#else 
 
void FatalError(); 



void BuildCRCTable(); 
unsigned long CalculateBlockCRC32(); 
unsigned long UpdateCharacterCRC32(); 
int ParseArguments(); 
void UsageExit(); 
void OpenArchiveFiles(); 
void BuildFileList(); 
int ExpandAndMassageMSDOSFileNames(); 
void MassageMSDOSFileName(); 
int AddFileListToArchive(); 
int ProcessAllFilesInInputCar(); 
int SearchFileList(); 
int WildCardMatch(); 
void SkipOverFileFromInputCar(); 
void CopyFileFromInputCar(); 
void PrintListTitles(); 
void ListCarFileEntry(); 
int RatioInPercent(); 
int ReadFileHeader(); 
unsigned long UnpackUnsignedData(); 
void WriteFileHeader(); 
void PackUnsignedData(); 
void WriteEndOfCarHeader(); 
void Insert(); 
void Extract(); 
int Store(); 
unsigned long Unstore(); 
int LZSSCompress(); 
unsigned long LZSSExpand(); 
 
#endif 
 
/* 
* All global variables are defined here. 
*/ 
 
char *TempFileName[ FILENAME_MAX ]; /* The output archive is first    
*/ 
                                    /* opened with a temporary name   
*/ 
 
FILE * InputCarFile;                /* The input CAR file. This file  
*/ 
                                    /* may not exist for 'A' commands 
*/ 
 
char CarFileName[ FILENAME_MAX ];   /* Name of the CAR file, defined  
*/ 
                                    /* on the command line            
*/ 
 
FILE *OutputCarFile;                /* The output CAR, only exists 
for*/ 
                                    /* the 'A' and 'R' operations     
*/ 
 



HEADER Header;                      /* The Header block for the file  
*/ 
                                    /* presently being operated on    
*/ 
 
char *FileList[ 100 ];              /* The list of file names passed  
*/ 
                                    /* on the command line            
*/ 
 
unsigned long Ccitt32Table[ 256 ];  /* This array holds the CRC       
*/ 
                                    /* table used to calculate the 32 
*/ 
                                    /* bit CRC values                 
*/ 
 
/* 
* This is the main routine for processing CAR commands. Most of the 
* major work involved here has been delegated to other functions. 
* This routine first parses the command line, then opens up the input 
* and possibly the output archive. It then builds a list of files 
* to be processed by the current command. If the command was 'A', all 
* of the files are immediately added to the output archives. Finally, 
* the main processing loop is called. It scans through the entire 
* archive, taking action on each file as necessary. Once that is 
* complete, all that is left to do is optionally delete the input file, 
* then rename the output file to have the correct CAR file name. 
*/ 
 
int main( argc, argv ) 
int argc; 
char *argv[]; 
{ 
 
 int command; 
 int count; 
 
 setbuf( stdout, NULL ); 
 setbuf( stderr, NULL ): 
 fprintf( stderr, "CARMAN 1.0 : " ); 
 BuildCRCTable(); 
 command = ParseArguments( argc, argv ); 
 fprintf( stderr, "\n" ); 
 OpenArchiveFiles( argv[ 2 ], command ); 
 BuildFileList( argc - 3, argv + 3, command ); 
 if ( command == 'A' ) 
  count = AddFileListToArchive(); 
 else 
  count = 0; 
 if ( command == 'L' ) 
  PrintListTitles(); 
 count = ProcessAllFilesInInputCar( command, count ); 
 if ( OutputCarFile != NULL && count != 0 ) { 
  WriteEndOfCarHeader(); 
  if ( ferror( OutputCarFile ) || fclose( OutputCarFile ) == EOF ) 
   FatalError( "Can't write" ); 



 
  #ifdef __STDC__ 
   remove( CarFileName ); 
   rename(TempFileName, CarFileName ); 
  #else 
   unlink( CarFileName ); 
   link( TempFileName, CarFileName ); 
   unlink( TempFileName ); 
  #endif 
 
 } 
 if ( command != 'P' ) 
  printf( "\n%d file%s\n", count, ( count == 1 ) ? "" : "s" ); 
  else 
  fprintf( stderr, "\n%d file%s\n", count, 
                 ( count == 1 ) ? '' : "s" ); 
  return( 0 ); 
} 
 
/* 
* FatalError provides a short way for us to exit the program when 
* something bad happens, as well as printing a diagnostic message. 
* If an output CAR file has been opened, it is deleted as well, 
* which cleans up most of the traces of our work here. Note that 
* K&R compilers handle variable length argument lists differently 
* than ANSI compilers, so we have two different entries for the 
* routines. 
*/ 
 
#ifdef __STDC__ 
 
void FatalError( char *fmt, ... ) 
{ 
 va_list args; 
 
 va_start( args, fmt ); 
#else 
 
void FatalError( va_alist ) 
va_dcl 
{ 
 va_list args; 
 char *fmt; 
 
 va_start( args ); 
 fmt = va_arg( args, char * ); 
 
#endif 
 putc( '\n', stderr ); 
 vfprintf( stderr, fmt, args ); 
 putc( '\n', stderr ); 
 va_end( args ); 
 if ( OutputCarFile != NULL ) 
  fclose( OutputCarFile ); 
#ifdef __STDC__ 
    remove( TempFileName ); 
#else 



  unlink( TempFileName ); 
#endif 
 exit( 1 ); 
} 
 
/* 
* This routine simply builds the coefficient table used to calculate 
* 32-bit CRC values throughout this program. The 256-long word table 
* has to be set up once when the program starts. Alternatively, the 
* values could be hard-coded in, which would offer a miniscule 
* improvement in overall performance of the program. 
*/ 
 
void BuildCRCTable() 
{ 
 int i; 
 int j; 
 unsigned long value; 
 
 for ( i = 0; i <= 255 ; i++ ) { 
  value = i; 
  for ( j = 8 ; j > 0; j-- ) { 
   if ( value & 1 ) 
    value = ( value >> 1 ) ^ CRC32_POLYNOMIAL; 
   else 
    value >>= 1; 
  } 
  Ccitt32Table[ i ] = value; 
 
 } 
} 
 
/* 
* This is the routine used to calculate the 32-bit CRC of a block of 
* data. This is done by processing the input buffer using the 
* coefficient table that was created when the program was initialized. 
* This routine takes an input value as a seed, so that a running 
* calculation of the CRC can be used as blocks are read and written. 
*/ 
 
unsigned long CalculateBlockCRC32( count, crc, buffer ) 
unsigned int count; 
unsigned long crc; 
void *buffer; 
{ 
 unsigned char *p = (unsigned char *) buffer; 
 unsigned long temp1; 
 unsigned long temp2; 
 
 while ( count-- != 0 ) { 
  temp1 = ( crc >> 8 ) & 0x00FFFFFFL; 
  temp2 = Ccitt32Table[ ( (int) crc ^ *p++ ) & 0xff ]; 
  crc = temp1 ^ temp2; 
 } 
 return( crc ); 
} 
/* 



* If I/0 is being done on a byte-by-byte basis, as is the case with the 
* LZSS code, it is easier to calculate the CRC of a byte at a time 
* instead of a block at a time. This routine performs that function, 
* once again taking a CRC value as input, so that this can be used to 
* perform on the fly calculations. In situations where performance is 
* critical, this routine could easily be recorded as a macro. 
*/ 
unsigned long UpdateCharacterCRC32( crc, c ) 
unsigned long crc; 
int c; 
{ 
 unsigned long temp1; 
 unsigned long temp2; 
 
 temp1 = ( crc >> 8 ) & 0x00FFFFFFL; 
 temp2 = Ccitt32Table[ ( (int) crc ^ c ) & 0xff ]; 
 crc = temp1 ^ temp2; 
 return( crc ); 
} 
 
/* 
* When CARMAN first starts up, it calls this routine to parse the 
* command line. We look for several things here. If any of the 
* conditions needed to run CARMAN is not met, the routine opts for 
* the usage printout exit. The first thing to be sure of is that 
* the command line has at least three arguments, which should be 
* the "CARMAN", a single character command, and an CAR archive name. 
* After that, we check to be sure that the command name is a valid 
* letter, and incidentally print out a short message based on it. 
* Both the Addfiles and Delete commands require that some file names 
* be listed as well, so a check is made for additional arguments when 
* each of those arguments is encountered. Finally, the command itself 
* is returned to main(), for use later in processing the command. 
*/ 
 
int ParseArguments( argc, argv ) 
int argc; 
char *argv[]; 
{ 
 int command; 
 
 if ( argc < 3 || strlen( argv[ 1 ] ) > 1 ) 
  UsageExit(); 
 switch( command = toupper( argv[ 1 ][ 0 ] ) ) { 
  case 'X' : 
   fprintf( stderr, "Extracting files\n"; 
   break; 
  case 'R' : 
   fprintf( stderr, "Replacing files\n" ); 
   break; 
  case 'P' : 
   fprintf( stderr, "Print files to stdout\n" ); 
   break; 
  case 'T' : 
   fprintf( stderr, "Testing integrity of files\n" ); 
   break; 
  case 'L' : 



   fprintf( stderr, "Listing archive contents\n" ); 
   break; 
  case 'A' : 
   if ( argc <= 3 ) 
    UsageExit(); 
   fprintf( stderr, "Adding/replacing files to archive\n" ); 
   break; 
  case 'D' : 
   if ( argc <= 3 ) 
    UsageExit(); 
    fprintf( stderr, "Deleting files from archive\n" )' 
    break; 
   default : 
   UsageExit(); 
  }; 
  return( command ); 
} 
 
/* 
* UsageExit just provides a universal point of egress for those 
* times when there appears to be a problem on the command line. 
* This routine prints a short help message then exits back to the OS. 
*/ 
 
void UsageExit() 
{ 
 fputs( "CARMAN - Compressed ARchive MANager\n", stderr ); 
 fputs( "Usage: carman command car-file [file ...]\n", stderr ); 
 fputs( "Commands:\n", stderr ); 
 fputs( " a: Add files to a CAR archive (replace if present)\n", 
                                                    stderr ); 
 fputs( " x: Extract files from a CAR archive\n", stderr ); 
 fputs( " r: Replace files in a CAR archive\n", stderr ); 
 fputs( " d: Delete files from a CAR archive\n", stderr ); 
 fputs( " p: Print files on standard output\n", stderr ); 
 fputs( " l: List contents of a CAR archive\n", stderr ); 
 fputs( " t: Test files in a CAR archive\n", stderr ); 
 fputs( "\n", stderr ); 
 exit( 1 ); 
} 
 
/* 
* After the command line has been parsed, main() has enough information 
* to intelligently open the input and output CAR archive files. The 
* name should have been specified on the command line, and passed to 
* this routine by main(). As a convenience to the user, if the CAR 
* suffix is left off the archive, this routine will add it on. 
* There is one legitimate excuse for not being able to open the input 
* file, which is if this is the 'Addfiles' command. There may not be 
* an input archive when that command is called, in which case a failure 
* is tolerated. Once the input file has been opened, an output file 
* may have to be opened as well. The 'Addfiles', 'Delete', and 
* 'Replace' commands all modify the CAR archive, which means the input 
* CAR file is going to be processed and copied to the output. Initially, 
* the output CAR file gets a temporary name. It will be renamed later 
* after the input has been processed. 
* 



* Since we will probably be doing lots of bulk copies from the input 
* CAR file to the output CAR file, it makes sense to allocate big 
* buffers for the files. This is done with the two calls to setvbuf() 
* right before the routine exits. 
* 
*/ 
void OpenArchiveFiles( name, command ) 
 
char *name; 
int command; 
{ 
 char *s; 
 int i; 
 
 strncpy( CarFileName, name, FILENAME_MAX - 1 ); 
 CarFileName[ FILENAME_MAX - 1 ] = '\0'; 
 InputCarFile = fopen( CarFileName, "rb" ); 
 if ( InputCarFile == NULL ) { 
#ifdef MSDOS 
    s = strrchr( CarFileName, '\\' ); 
#else /* UNIX */ 
    s = strrchr( CarFileName, '/' ); 
#endif 
   if ( s == NULL ) 
    s = CarFileName; 
   if ( strrchr( s, '.' ) == NULL ) 
    if ( strlen( CarFileName ) < ( FILENAME_MAX - 4 ) ) { 
     strcat( CarFileName, ".car" ); 
     InputCarFile = fopen( CarFileName, "rb" ); 
   } 
 } 
 if ( InputCarFile == NULL && command != 'A' ) 
  FatalError( "Can't open archive '%s'", CarFileName ); 
 if ( command == 'A' || command == 'R' || command == 'D' ) { 
  strcpy( TempFileName, CarFileName ); 
  s = strrchr( TempFileName, '.'); 
  if ( s == NULL ) 
   s = TempFileName + strlen( TempFileName ); 
  for ( i = 0 ; i < 10 ; i++ ) { 
   sprintf( s, ".$$%d", i ); 
   if ( ( OutputCarFile = fopen( TempFileName, "r" ) ) == NULL ) 
    break; 
   fclose( OutputCarFile ); 
   OutputCarFile = NULL; 
  } 
   if ( i == 10 ) 
    FatalError( "Can't open temporary file %s", TempFileName ); 
   OutputCarFile = fopen( TempFileName, "wb" ); 
   if ( OutputCarFile == NULL ) 
    FatalError( "Can't open temporary file %s", TempFileName ); 
  } 
  if ( InputCarFile != NULL ) 
   setvbuf( InputCarFile, NULL, _IOFBF, 8192 ); 
  if ( OutputCarFile != NULL ) 
   setvbuf( OutputCarFile, NULL, _IOFBF, 8192 ); 
} 
 



/* 
* Most of the commands given here take one or more file names as 
* arguments. The list of files given on the command line needs to be 
* processed here and put into a list that can easily be manipulated by 
* other parts of the program. That processing is done here. An array 
* called FileList is created, which will have a series of pointers to 
* file names. If no file names were listed on the command line, which 
* could be the case for commands like 'List' or 'Extract', a single 
* file name of '*' is put on the start of the list. Since '*' is the 
* ultimate wild card, matching everything, we don't have to have 
special 
* processing anywhere else for an empty file list. The file names here 
* are also massaged a bit further for MS-DOS file names. Under MS-DOS, 
* case is not significant in file names. This means that CARMAN 
* shouldn't get confused by thinking 'foo.c' and 'FOO.C' are two 
* different files. To avoid this, all MS-DOS file names are converted 
* here to lower case. Additionally, any file name without an extension 
* is forced to end with a period, for similar reasons. This ensures 
that 
* CARMAN knows 'FOO' and 'FOO.' are the same file. Note that I don't 
* want to do this for wild card specifications. Finally, there is the 
* problem of MS-DOS wild card file names. When using the 'Add' command, 
* wild cards on the command line need to be expanded into real file 
* names, then undergo the additional processing mentioned earlier. This 
* is done with a call to a function that is MS-DOS specific. None of 
* this special processing is done under UNIX, where case is significant, 
* and wild cards are expanded by the shell. 
*/ 
 
void BuildFileList( argc, argv, command ) 
int argc; 
char *argv[]; 
int command; 
{ 
 int i; 
 int count; 
 
 count = 0; 
 if ( argc == 0 ) 
  FileList[ count++ ] = "*"; 
 else { 
  for ( i = 0 ; i < argc ; i++ ) { 
#ifdef MSDOS 
    if ( command == 'A' ) 
     count = ExpandAndMassageMSDOSFileNames( count, argv[ i ] ); 
    else 
     MassageMSDOSFileName( count++, argv[ i ] ); 
#endif 
#ifndef__MSDOS__ 
    FileList [ count ] = malloc( strlen( argv[ i ] ) + 2 ); 
    if ( FileList[ count ] == NULL ) 
     FatalError( "Ran out of memory storing file names" ); 
    strcpy( FileList[ count++ ], argv[ i ] ); 
#endif 
    if ( count > 99 ) 
     FatalError( "Too many file names" ); 
  } 



 } 
 FileList[ count ] = NULL; 
} 
 
/* 
* Under MS-DOS, wildcards on the command line are not expanded to 
* a list of file names, so it is up to application programs to do the 
* expansion themselves. This routine takes care of that, by using 
* the findfirst and findnext routines. Unfortunately, each MS-DOS 
* compiler maker has implemented this function slightly differently, so 
* this may need to be modified for your particular compiler. However, 
* this routine can be replaced with a call to MassageMSDOSFileName(), 
* and the program will work just fine, without the ability to handle 
* wild card file names. 
*/ 
#ifdef MSDOS 
 
#include <dos.h> 
#include <dir.h> 
 
int ExpandAndMassageMSDOSFileNames( count, wild_name ) 
int count; 
char *wild_name; 
{ 
 int done; 
 DIR_STRUCT file_info_block; 
 char *leading_path; 
 char *file_name; 
 char *p; 
 
 leading_path = malloc( strlen( wild_name ) + 1 ); 
 file_name = malloc( strlen( wild_name ) + 13 ); 
 if ( leading_path == NULL || file_name == NULL ) 
  FatalError( "Ran out of memory storing file names" ); 
 strcpy( leading_path, wild_name ); 
 p = strrchr( leading_path, '\\' ); 
 if ( p != NULL ) 
  p[ 1 ] = '\0'; 
 else { 
  p = strrchr( leading_path, ';' ); 
  if ( p != NULL ) 
   p[ 1 ] = '\0'; 
  else 
   leading_path[ 0 ] = '\0'; 
 } 
 
 done = FIND_FIRST( wild_name, & file_info_block, 0 ); 
 while ( !done ) { 
  strcpy( file_name, leading_path ); 
  strcat( file_name, file_info_block.DIR_FILE_NAME ); 
  MassageMSDOSFileName( count++, file_name ); 
  done = FIND_NEXT( & file_info_block ); 
  if ( count > 99 ) 
   FatalError( "Too many file names" ); 
 } 
 free( leading_path ); 
 free( file_name ); 



 return( count ); 
} 
 
/* 
* As was discussed earlier, this routine is called to perform a small 
* amount of normalization on file names. Under MS_DOS, case is not 
* significant in file names. In order to avoid confusion later, we 
force 
* all file names to be all lower case, so we can't accidentally add two 
* files with the same name to a CAR archive. Likewise, we need to 
* prevent confusion between files that end in a period, and the same 
* file without the terminal period. We fix this by always forcing the 
* file name to end in a period. 
*/ 
 
void MassageMSDOSFileName( count, file ) 
int count; 
char *file; 
{ 
 int i; 
 char *p; 
 
 FileList[ count ] = malloc( strlen( file ) + 2 ); 
 if ( FileList[ count ] == NULL ) 
  FatalError( "Ran out of memory storing file names" ); 
 strcpy( FileList[ count ], file ); 
 for ( i = 0 ; FileList[ count ] [ i ] != '\0' ; i++ ) 
  FileList[ count ][ i ] = (char) 
       tolower(FileList[ count ][ i ]); 
 if ( strpbrk( FileList [ count ], "*?" ) == NULL ) { 
  p = strrchr( FileList[ count ], '\\' ); 
  if ( p == NULL ) 
   p = FileList[ count ]; 
  if ( strrchr( p, '.' ) == NULL ) 
   strcat( FileList[ count ], "." ); 
 } 
} 
 
#endif 
 
/* 
* Once all of the argument processing is done, the main() procedure 
* checks to see if the command is 'Addfiles'. If it is, it calls 
* this procedure to add all of the listed files to the output buffer 
* before any other processing is done. That is taken care of right 
* here. This routine basically does three jobs before calling the 
* Insert() routine, where the compression actually takes place. First, 
* it tries to open the file, which ought to work. Second, it strips the 
* leading drive and path information from the file, since we don't keep 
* that information in the archive. Finally, it checks to see if the 
* resulting name is one that has already been added to the archive. 
* If it has, the file is skipped so that we don't end up with an 
* invalid archive. 
*/ 
 
int AddFileListToArchive() 
{ 



 int i; 
 int j; 
 int skip; 
 char *s; 
 FILE *input_text_file; 
 
 for ( i = 0 ; FileList[ i ] != NULL ; i++ ) { 
  input_text_file = fopen( FileList[ i ], "rb" ); 
   if ( input_text_file == NULL ) 
    FatalError( "Could not open %s to add to CAR file", 
       FileList[ i ] ); 
#ifdef MSDOS 
   s = strrchr( FileList[ i ], '\\' ); 
   if ( s == NULL ) 
    s = strrchr( FileList[ i ], ':' ); 
#endif 
#ifndef MSDOS /* Must be UNIX */ 
   s = strrchr( FileList[ i ], '/' ); 
#endif 
   if ( s != NULL ) 
    s++; 
   else 
    s = FileList[ i ]; 
   skip = 0; 
   for ( j = 0 ; j < i ; j++ ) 
    if ( strcmp( s, FileList[ j ] ) == 0 ) { 
     fprintf( stderr, "Duplicate file name: %s", FileList[ i ] ); 
     fprintf( stderr, " Skipping this file...\n" ); 
     skip = 1; 
     break; 
    } 
   if (s != FileList[ i ] ) { 
    for ( j = 0 ; s[ j ] != '\0' ; j++ ) 
     FileList[ i ][ j ] = s[ j ]; 
    FileList[ i ][ j ] = '\0'; 
   } 
   if ( !skip ) { 
    strcpy( Header.file_name, FileList[ i ] ); 
    Insert( input_text_file, "Adding" ); 
   } else 
    fclose( input_text_file ); 
 } 
 return( i ); 
} 
 
/* 
* This is the main loop where all the serious work done by this 
* program takes place. Essentially, this routine starts at the 
* beginning of the input CAR file, and processes every file in 
* the CAR. Depending on what command is being executed, that might 
* mean expanding the file, copying it to standard output, 
* adding it to the output CAR, or skipping over it completely. 
*/ 
 
int ProcessAllFilesInInputCar( command, count ) 
int command; 
int count; 



{ 
 int matched; 
 FILE *input_text_file; 
 FILE *output_destination; 
 
 if ( command == 'P' ) 
  output_destination = stdout; 
 else if ( command == 'T' ) 
#ifdef MSDOS 
   output_destination = fopen( "NUL", "wb" ); 
#else 
   output_destination = fopen( "/dev/null", "wb" ); 
#endif 
 else 
   output_destination = NULL; 
 
/* 
* This is the loop where it all happens. I read in the header for 
* each file in the input CAR, then see if it matches any of the file 
* and wildcard specifications in the FileList created earlier. That 
* information, combined with the command, tells me what I need to 
* know in order to process the file. Note that if the 'Addfiles' 
command 
* is being executed, the InputCarFile will be NULL, so this loop 
* can be safely skipped. 
*/ 
 while ( InputCarFile != NULL && ReadFileHeader() != 0 ) { 
 matched = SearchFileList( Header.file_name ); 
 switch ( command ) { 
  case 'D' : 
   if ( matched ) { 
    SkipOverFileFromInputCar(); 
    count++; 
   } else 
    CopyFileFromInputCar(); 
   break; 
  case 'A' : 
   if ( matched ) 
    SkipOverFileFromInputCar(); 
   else 
    CopyFileFromInputCar(); 
   break; 
  case 'L' : 
   if ( matched ) { 
    ListCarFileEntry(); 
    count++; 
   } else 
    SkipOverFileFromInputCar(); 
   break; 
  case 'P' : 
  case 'X' : 
  case 'T' : 
   if ( matched ) { 
    Extract( output_destination ); 
    count++; 
   } else 
    SkipOverFileFromInputCar(); 



   break; 
  case 'R' : 
   if ( matched ) { 
    input_text_file = fopen( Header.file_name, "rb" ); 
    if ( input_text_file == NULL ) { 
     fprintf( stderr, "Could not find %s", Header.file_name ); 
     fprintf( stderr, " for replacement, skipping\n" ); 
     CopyFileFromInputCar(); 
    } else { 
     SkipOverFileFromInputCar(); 
     Insert( input_text_file, "Replacing" ); 
     count++; 
     fclose(input_text_file ); 
    } 
   } else 
    CopyFileFromInputCar(); 
   break; 
  } 
 } 
 return( count ); 
} 
 
/* 
* This routine looks through the entire list of arguments to see if 
* there is a match with the file name currently in the header. As each 
* new file in InputCarFile is encountered in the main processing loop, 
* this routine is called to determine if it has an appearance anywhere 
* in the FileList[] array. The results is used to in the main loop 
* to determine what action to take. For example, if the command were 
* the 'Delete' command, the match result would determine whether to 
* copy the file form the InputCarFile to the OutputCarFile, or skip 
* over it. 
* 
* The actual work in this routine is really performed by the 
* WildCardMatch() routine which checks the file name against one of the 
* names in the FileList[] array. Since most of the commands can use 
* wild cards to specify file names inside the CAR file, we need a 
* special comparison routine. 
*/ 
 
int SearchFileList( file_name ) 
char *file_name; 
{ 
  int i; 
 
  for ( i = 0 ; FileList[ i ] != NULL ; i++ ) { 
   if ( WildCardMatch( file_name, FileList[ i ] ) ) 
    return( 1 ); 
  } 
  return( 0 ); 
} 
/* 
* WildCardMatch() compares string to wild_string, looking for a match. 
* Wild card characters supported are only '*' and '?', where '*' 
* represents a string of any length, including 0, and '?' represents 
any 
* single character. 



*/ 
 
int WildCardMatch( string, wild_string ) 
char *string; 
char *wild_string; 
{ 
 for ( ; ; ) { 
  if ( *wild_string == '*' ) { 
   wild_string++; 
   for ( ; ; ) { 
    while ( *string != '\0' && *string != *wild_string ) 
      string++; 
    if ( WildCardMatch( string, wild_string ) ) 
     return( 1 ); 
    else if ( *string == '\0' ) 
     return( 0 ); 
    else 
     string++; 
   } 
 } else if ( *wild_string == '?' ) { 
   wild_string++; 
   if ( * string++ == '\0' ) 
     return( 0 ); 
   } else { 
    if ( * string != *wild_string ) 
     return( 0 ); 
    if ( *string == '\0' ) 
     return( 1 ); 
    string++; 
    wild_string++; 
   } 
  } 
} 
 
/* 
* When the main processing loop reads in a header, it checks to see 
* if it is going to copy that file either to the OutputCarFile or 
expand 
* it. If neither is going to happen, we need to skip past this file and 
* go on to the next header. This can be done by seeking past the 
* compressed file. Since the compressed size is stored in the header 
* information, it is easy to do. Note that this routine assumes that 
the 
* file pointer has not been modified since the header was read in. This 
* means it should be located at the first byte of the compressed data. 
*/ 
 
void SkipOverFileFromInputCar() 
{ 
   fseek( InputCarFile, Header.compressed_size, SEEK_CUR ); 
} 
 
/* 
* When performing an operation that modifies the input CAR file, 
* compressed files will frequently need to be copied from the input CAR 
* file to the output CAR file. This routine does that using simple 
* repeated block copy operations. Since it is writing directly to the 



* output CAR file, the first thing it needs to do is write out the 
* current Header so that the CAR file will be properly structured. 
* Following that, the compressed file is copied one block at a time to 
* the output. When this routine completes, the input file pointer is 
* positioned at the next header in the input CAR file, and the output 
* file pointer is positioned at the EOF position in the output file. 
* This is the proper place for the next record to begin. 
*/ 
 
void CopyFileFromInputCar() 
{ 
 char buffer[ 256 ]; 
 int count; 
 
 WriteFileHeader(); 
 while ( Header.compressed_size != 0 ) { 
  if ( Header.compressed_size < 256 ) 
   count = (int) Header.compressed_size; 
  else 
   count = 256; 
  if ( fread( buffer, 1, count, InputCarFile ) != count ) 
   FatalError( "Error reading input file %s", Header.file_name ); 
  Header.compressed_size -= count; 
  if ( fwrite( buffer, 1, count, OutputCarfile) != count ) 
   FatalError( "Error writing to output CAR file" ); 
 } 
} 
 
/* 
* When the operation requested by the user is 'List', this routine is 
* called to print out the column headers. List output goes to standard 
* output, unlike most of the other messages in this program, which go 
* to stderr. 
*/ 
 
void PrintListTitles() 
{ 
 
 printf( "\n" ); 
 printf( "         Original Compressed\n" ); 
 printf( "Filename  Size  Size     Ratio CRC-32 Method\n" ); 
 printf( "________  ____  ____     _________________\n" ); 
 
} 
 
/* 
* When the List command is given, the main loop reads in each header 
* block, then tests to see if the file name in the header block matches 
* one of the file names (including wildcards) in the FileList. If it is, 
* this routine is called to print out the information on the file. 
*/ 
 
void ListCarFileEntry() 
{ 
 static char *methods[] = { 
  "Stored", 
  "LZSS" 



 }; 
 
printf( "%-20s %10lu %10lu %4d%% %081x %s\n", 
    Header.file_name, 
    Header.original_size, 
    Header.compressed_size, 
    RatioInPercent( Header.compressed_size, 
    Header.original_size ),    Header.original_crc, 
    methods[ Header.compression_method - 1 ] ); 
} 
 
/* 
* The compression figure used in this book is calculated here. The 
value 
* is scaled so that a file that has just been stored has a compression 
* ratio of 0%, while one that has been shrunk down to nothing would 
have 
* a ratio of 100%. 
*/ 
 
int RatioInPercent( compressed, original ) 
unsigned long compressed; 
unsigned long original; 
{ 
 int result; 
 
 if ( original == 0 ) 
  return( 0 ); 
 result = (int) ( ( 100L * compressed ) / original ); 
 return( 100 - result ); 
} 
 
/* 
* This routine is where all the information about the next file in 
* the archive is read in. The data is read into the global Header 
* structure. To preserve portability of CAR files across systems, 
* the data in each file header is packed into an unsigned char array 
* before it is written out to the file. To read this data back in 
* to the Header structure, we first read it into another unsigned 
* character array, then employ an unpacking routine to convert that 
* data into ints and longs. This helps us avoid problems with 
* big/little endian conflicts, as well as incompatibilities in 
structure 
* packing, which show up even between different compilers targetted for 
* the same architecture. 
* 
* To avoid causing any additional confusion, the data members for the 
* header structure are at least stored in exactly the same order as 
* they appear in the structure definition. The primary difference is 
* that the entire file name character array is not stored, which would 
* waste a lot of space. Instead, we just store the number of characters 
* in the name, including the null termination character. The file name 
* serves the additional purpose of identifying the end of the CAR file 
* with a file name length of 0 bytes. 
*/ 
 
int ReadFileHeader() 



{ 
 unsigned char header_data[ 17 ]; 
 unsigned long header_crc; 
 int i; 
 int c; 
 for ( i = 0 ; ; ) { 
  c = getc( InputCarFile ); 
  Header.file_name[ i ] = (char) c; 
  if ( c == '\0' ) 
   break; 
  if ( ++i == FILENAME_MAX ) 
   FatalError ( "File name exceeded maximum in header" ); 
} 
if ( i == 0 ) 
 return( 0 ); 
header_crc = CalculateBlockCRC32( i + 1, CRC_MASK, Header.file_name ); 
fread( header_data, 1, 17, InputCarFile ); 
Header.compression_method = (char) 
              UnpackUnsignedData( 1, header_data + 0 ); 
Header.original_size    = UnpackUnsignedData( 4, header_data + 1 ); 
Header.compressed_size  = UnpackUnsignedData( 4, header_data + 5 ); 
Header.original_crc     = UnpackUnsignedData( 4, header_data + 9 ); 
Header.header_crc       = UnpackUnsignedData( 4, header_data + 13 ); 
header_crc = CalculateBlockCRC32(13, header_crc, header_data ); 
header_crc ^= CRC_MASK; 
if ( Header.header_crc != header_crc ) 
 FatalError( "Header checksum error for file %s", Header.file_name ); 
return( 1 ); 
} 
 
/* 
* This routine is used to transform packed characters into unsigned 
* integers. Its only purpose is to convert packed character data 
* into integers and longs. 
*/ 
 
unsigned long UnpackUnsignedData( number_of_bytes, buffer ) 
int number_of_bytes; 
unsigned char *buffer; 
{ 
 unsigned long result; 
 int shift_count; 
 result = 0; 
 shift_count = 0; 
 while ( number_of_bytes-- > ) { 
  result |= (unsigned long) * buffer++ << shift_count; 
  shift_count += 8; 
 } 
 return( result ); 
} 
 
/* 
* This routine is called to write out the current Global header block 
* to the output CAR file. It employs the same packing mechanism 
* discussed earlier. This routine also calculates the CRC of the 
* header, which is sometimes not necessary. 
*/ 



 
void WriteFileHeader() 
{ 
 unsigned char header_data[ 17 ]; 
 int i; 
 
 for ( i = 0 ; ; ) { 
  putc( Header.file_name[ i ], OutputCarFile ); 
  if ( Header.file_name[ i++ ] == '\0' ) 
   break; 
} 
Header.header_crc = CalculateBlockCRC32( i, CRC_MASK, 
                     Header.file_name ); 
PackUnsignedData( 1, (long) 
                     Header.compression_method,header_data + 0 ); 
PackUnsignedData( 4, Header.original_size,    header_data + 1 ); 
PackUnsignedData( 4, Header.compressed_size,  header_data + 5 ); 
PackUnsignedData( 4, Header.original_crc,     header_data + 9 ); 
Header.header_crc = CalculatedBlockCRC32( 13, Header.header_crc, 
                                         header_data ); 
Header.header_crc ^= CRC_MASK; 
 PackUnsignedData( 4, Header.header_crc, header_data + 13 ); 
 fwrite( header_data, 1, 17, OutputCarFile ); 
} 
 
/* 
* This is the routine used to pack integers and longs into a character 
* array. The character array is what eventually gets written out to the 
* CAR file. The data is always written out with the least significant 
* bytes of the integers or long integers going first. 
*/ 
 
void PackUnsignedData( number_of_bytes, number, buffer ) 
int number_of_bytes; 
unsigned long number; 
unsigned char *buffer; 
{ 
 while ( number_of_bytes-- > 0 ) { 
  *buffer++ = ( unsigned char ) number & Oxff; 
  number >>= 8; 
 } 
} 
 
/* 
* The last header in a CAR file is defined by the fact that it has 
* a file name length of zero. Since the file name is the 
* first element to be written out, we can create the final header 
* by just writing out a null termination character. This technique 
* saves a little bit of space. 
*/ 
 
void WriteEndOfCarHeader() 
{ 
 fputc( 0, OutputCarFile ); 
} 
 
/* 



* This is the routine called by the main processing loop and the 
* Addfiles routine. It takes an input file and writes the header and 
* file data to the Output CAR file. There are several complications 
that 
* the routine has to deal with. First of all, the header information 
* it gets when it first starts is incomplete. For instance, we don't 
* know how many bytes the file will take up when it is compressed. 
* Because of this, the position of the header is stored, and the 
* incomplete copy is written out. After the compression routine 
finishes, 
* the header is now complete. In order to put the correct header into 
* the output CAR file, this routine seeks back in the file to the 
* original header position and rewrites it. 
* 
* The second complication lies in the fact that some files are not very 
* compressible. In fact, for some files the LZSS algorithm may actually 
* cause the file to expand. In these cases, the compression routine 
* gives up and passes a failure code back to Insert(). When this 
* happens, the routine has to seek back to the start of the file, 
rewind 
* the input file, and store it instead of compressing it. Because of 
* this, the starting position of the file in the output CAR file is 
also 
* stored when the routine starts up. 
*/ 
 
void Insert( input_text_file, operation ) 
FILE *input_text_file; 
char *operation; 
{ 
 long saved_position_of_header; 
 long saved_position_of_file; 
 
 fprintf( stderr, "%s %-20s", operation, Header, file_name ); 
 saved_position_of_header = ftell( OutputCarFile ); 
 Header.compression_method = 2; 
 WriteFileHeader(); 
 saved_position_of_file = ftell(OutputCarFile); 
 fseek( input_text_file, OL, SEEK_END ); 
 Header.original_size = ftell( input_text_file ); 
 fseek( input_text_file, OL, SEEK_SET ); 
 if ( !LZSSCompress( input_text_file ) ) { 
  Header.compression_method = 1; 
  fseek( OutputCarFile, saved_position_of_file, SEEK_SET ); 
  rewind( input_text_file ); 
  Store( input_text_file ); 
 } 
 fclose( input_text_file ); 
 fseek( OutputCarFile, saved_position_of_header, SEEK_SET ); 
 WriteFileHeader(); 
 fseek( OutputCarFile, OL, SEEK_END ); 
 printf( "%d%%\n", RatioInPercent( Header.compressed_size, 
                     Header.original_size ) ); 
} 
 
/* 
* The Extract routine can be called for one of three reasons. If the 



* file in the CAR is truly being extracted, Extract() is called with 
* no destination specified. In this case, the Extract routine opens the 
* file specified in the header and either unstores or decompresses the 
* file from the CAR file. If the archive is being tested for veracity, 
* the destination file will have been opened up earlier and specified 
as 
* the null device. Finally, the 'Print' option may have been selected, 
* in which case the destination file will be extracted to stdout. 
*/ 
 
void Extract( destination ) 
FILE *destination; 
{ 
 FILE *output_text_file; 
 unsigned long crc; 
 int error; 
 
 fprintf( stderr, "%-20s ", Header.file_name ); 
 error = 0; 
 if ( destination == NULL ) { 
 if ( ( output_text_file = fopen(Header.file_name, "wb") 
                            ) == NULL ) { 
  fprintf( stderr, "Can't open %s\n", Header.file_name ); 
  fprintf( stderr, "Not extracted\n" ); 
  SkipOverFileFromInputCar(); 
  return; 
 } 
} else 
 output_text_file = destination; 
switch( Header.compression_method ) { 
 case 1 : 
  crc = Unstore( output_text_file ); 
  break; 
 case 2 : 
  crc = LZSSExpand( output_text_file ); 
  break; 
 default : 
  fprintf( stderr, "Unknown method: %c\n", 
   Header.compression_method ); 
  SkipOverFileFromInputCar(); 
  error = 1; 
  crc = Header.original_crc; 
  break; 
 } 
 if ( crc != Header.original_crc ) { 
  fprintf( stderr, "CRC error reading data\n" ); 
  error = 1; 
 } 
 if ( destination == NULL ) { 
    fclose( output_text_file ); 
    if ( error ) 
#ifdef __STDC__ 
    remove( Header.file_name ); 
#else 
    unlink( Header.file_name ); 
#endif 
    } 



    if ( !error ) 
    fprintf( stderr, " OK\n" ); 
} 
 
/* 
* The CAR manager program is capable of handling many different forms 
of 
* compression. All the compression program has to do is obey a few 
* simple rules. First of all, the compression routine is required 
* to calculate the 32-bit CRC of the uncompressed data, and store the 
* result in the file Header, so it can be written out by the Insert() 
* routine. The expansion routine calculates the CRC of the file it 
* creates, and returns it to Extract() for a check against the Header 
* value. Second, the compression routine is required to quit if its 
* output is going to exceed the length of the input file. It needs to 
* quit *before* the output length passes the input, or problems will 
* result. The compression routine is required to return a true or false 
* value indicating whether or not the compression was a success. And 
* finally, the expansion routine is expected to leave the file pointer 
* to the Input CAR file positioned at the first byte of the next file 
* header. This means it has to read in all the bytes of the compressed 
* data, no more or less. 
* 
* All these things are relatively easy to accomplish for Store() and 
* Unstore(), since they do no compression or expansion. 
* 
*/ 
int Store( input_text_file ) 
FILE *input_text_file; 
{ 
 unsigned int n; 
 char buffer[ 256 ]; 
 int pacifier; 
 
 pacifier = 0; 
 Header.original_crc = CRC_MASK; 
 
 while ( ( n = fread( buffer, 1, 256, input_text_file ) ) != 0 ) { 
  fwrite( buffer, 1, n, OutputCarFile ); 
  Header.original_crc = CalculateBlockCRC32( n, Header.original_crc, 
                                                       buffer ); 
  if ( ( ++pacifier & 15 ) == 0 ) 
   putc( '.', stderr ); 
 } 
 Header.compressed_size = Header.original_size; 
 Header.original_crc ^= CRC_MASK; 
 return( 1 ); 
} 
 
unsigned long Unstore( destination ) 
FILE *destination; 
{ 
 unsigned long crc; 
 unsigned int count; 
 unsigned char buffer[ 256 ]; 
 int pacifier; 
 



 pacifier = 0; 
 crc = CRC_MASK; 
 while ( Header.original_size != 0 ) { 
  if ( Header.original_size > 256 ) 
   count = 256; 
  else 
   count = (int) Header.original_size; 
  if ( fread( buffer, 1, count, InputCarFile ) != count ) 
   FatalError( "Can't read from input CAR file" ); 
  if ( fwrite( buffer, 1, count, destination ) != count ) { 
   fprintf( stderr. "Error writing to output file" ); 
   return( ~Header.original_crc ); 
  } 
  crc = CalculateBlockCRC32( count, crc, buffer ); 
  if ( destination != stdout && ( pacifier++ & 15 ) == 0 ) 
   putc( '.', stderr ); 
  Header.original_size -= count; 
} 
 return( crc ^ CRC_MASK ); 
} 
 
/* 
* The second set of compression routines is found here. These 
* routines implement LZSS compression and expansion using 12-bit 
* index pointers and 4-bit match lengths. These values were 
* specifically chosen because they allow for "blocked I/O". Because 
* of their values, we can pack match/length pairs into pairs of 
* bytes, with characters that don't have matches going into single 
* bytes. This helps increase I/O since single bit input and 
* output does not have to be employed. Other than this single change, 
* this code is identical to the LZSS code used earlier in the book. 
*/ 
 
/* 
* Various constants_used to define the compression parameters. The 
* INDEX_BIT_COUNT tells how many bits we allocate to indices into the 
* text window. This directly determines the WINDOW_SIZE. The 
* LENGTH_BIT_COUNT tells how many bits we allocate for the length of 
* an encode phrase. This determines the size of the look ahead buffer. 
* The TREE_ROOT is a special node in the tree that always points to 
* the root node of the binary phrase tree. END_OF_STREAM is a special 
* index used to flag the fact that the file has been completely 
* encoded, and there is no more data. UNUSED is the null index for 
* the tree. MOD_WINDOW() is a macro used to perform arithmetic on tree 
* indices. 
* 
*/ 
 
#define INDEX_BIT_COUNT              12 
#define LENGTH_BIT_COUNT             4 
#define WINDOW_SIZE                  ( 1 << INDEX_BIT_COUNT ) 
#define RAW_LOOK_AHEAD_SIZE          ( 1 << LENGTH_BIT_COUNT ) 
#define BREAK_EVEN         ( ( 1 + INDEX_BIT_COUNT + LENGTH_BIT_COUNT ) 
\ 
                                        / 9 ) 
#define LOOK_AHEAD_SIZE    ( RAW_LOOK_AHEAD_SIZE + BREAK_EVEN ) 
#define TREE_ROOT                    WINDOW_SIZE 



#define END_OF_STREAM                0 
#define UNUSED                       0 
#define MOD_WINDOW( a )              ( ( a ) & ( WINDOW_SIZE - 1 ) ) 
 
/* 
* These are the two global data structures used in this program. 
* The window[] array is exactly that, the window of previously seen 
* text, as well as the current look ahead text. The tree[] structure 
* contains the binary tree of all of the strings in the window sorted 
* in order. 
*/ 
unsigned char window[ WINDOW_SIZE ]; 
 
struct { 
 int parent; 
 int smaller_child; 
 int larger_child; 
} tree[ WINDOW_SIZE + 1 ]; 
 
/* 
* Function prototypes for both ANSI C compilers and their K&R brethren. 
*/ 
 
#ifdef __STDC__ 
 
void InitTree( int r ); 
void ContractNode( int old_node, int new_node ); 
void ReplaceNode( int old_node, int new_node ); 
int FindNextNode( int node ); 
void DeleteString( int p ); 
int AddString( int new_node, int *match_position ); 
void InitOutputBuffer( void ); 
int FlushOutputBuffer( void ); 
int OutputChar( int data ); 
int OutputPair( int position, int length ); 
void InitInputBuffer( void ); 
int InputBit( void ); 
 
#else 
 
void InitTree(); 
void ContractNode(); 
void ReplaceNode(); 
int FindNextNode(); 
void DeleteString(); 
int AddString(); 
void InitOutputBuffer(); 
int FlushOutputBuffer(); 
int OutputChar(); 
int OutputPair(); 
void InitInputBuffer(); 
int InputBit(); 
 
#endif 
 
void InitTree( r ) 
int r; 



{ 
 int i; 
 
 for ( i = 0 ; i < ( WINDOW_SIZE + 1 ) ; i++ ) { 
  tree[ i].parent = UNUSED; 
  tree[ i].larger_child = UNUSED; 
  tree[ i].smaller_child = UNUSED; 
 } 
 tree[ TREE_ROOT ].larger_child = r; 
 tree[ r].parent = TREE_ROOT; 
 tree[ r ].larger_child = UNUSED; 
 tree[ r ].smaller_child = UNUSED; 
} 
 
/* 
* This routine is used when a node is being deleted. The link to 
* its descendant is broken by pulling the descendant in to overlay 
* the existing link. 
*/ 
void ContractNode( old_node, new_node ) 
int old_node; 
int new_node; 
{ 
 tree[ new_node ].parent = tree[ old_node ].parent; 
 if ( tree[ tree[ old_node ].parent ].larger_child == old_node ) 
  tree[ tree[ old_node ].parent ].larger_child = new_node; 
 else 
  tree[ tree[ old_node ].parent ].smaller_child = new_node; 
 tree[ old_node ].parent = UNUSED; 
} 
 
/* 
* This routine is also used when a node is being deleted. However, 
* in this case, it is being replaced by a node that was not previously 
* in the tree. 
*/ 
void ReplaceNode( old_node, new_node ) 
int old_node; 
int new_node; 
{ 
 int parent; 
 
 parent = tree[ old_node ].parent; 
 if ( tree [ parent ].smaller_child == old_node ) 
  tree[ parent ].smaller_child = new_node; 
 else 
  tree[ parent ].larger_child = new_node; 
 tree[ new_node ] = tree[ old_node ]; 
 tree[ tree[ new_node ].smaller_child ].parent = new_node; 
 tree[ tree[ new_node ].larger_child ].parent = new_node; 
 tree[ old_node ].parent = UNUSED; 
} 
 
/* 
* This routine is used to find the next smallest node after the node 
* argument. It assumes that the node has a smaller child. We find 
* the next smallest child by going to the smaller_child node, then 



* going to the end of the larger_child descendant chain. 
*/ 
int FindNextNode( node ) 
int node; 
{ 
 int next; 
 
 next = tree[ node ].smaller_child; 
 while ( tree [ next ].larger_child != UNUSED ) 
  next = tree[ next ].larger_child; 
 return( next ); 
} 
 
/* 
* This routine performs the classic binary tree deletion algorithm. 
* If the node to be deleted has a null link in either direction, we 
* just pull the non-null link up one to replace the existing link. 
* If both links exist, we instead delete the next link in order, which 
* is guaranteed to have a null link, then replace the node to be 
deleted 
* with the next link. 
*/ 
void DeleteString( p ) 
int p; 
{ 
 int replacement; 
 if ( tree[ p ].parent == UNUSED ) 
  return; 
 if ( tree[ p ].larger_child == UNUSED ) 
  ContractNode( p, tree [ p ].smaller_child ); 
 else if (tree[ p ].smaller_child == UNUSED ) 
  ContractNode( p , tree[ p ].larger_child ); 
 else { 
  replacement = FindNextNode( p ); 
  DeleteString( replacement ); 
  ReplaceNode( p , replacement ); 
 } 
} 
 
/* 
* This is where most of the work done by the encoder takes place. This 
* routine is responsible for adding the new node to the binary tree. 
* It also has to find the best match among all the existing nodes in 
* the tree, and return that to the calling routine. To make mattes 
* even more complicated, if the new_node has a duplicate in the tree, 
* the old_node is deleted, for reasons of efficiency. 
*/ 
 
int AddString( new_node, match_position ) 
int new_node; 
int *match_position; 
{ 
 int i; 
 int test_node; 
 int delta; 
 int match_length; 
 int *child; 



 
 if ( new_node == END_OF_STREAM ) 
  return( 0 ) ; 
 test_node = tree[ TREE_ROOT ].larger_child; 
 match_length = 0; 
 for ( ; ; ) { 
  for ( i = 0 ; i < LOOK_AHEAD_SIZE ; i++ ) { 
  delta = window[ MOD_WINDOW( new_node + 1 ) ] - 
      window[ MOD_WINDOW( test_node + i ) ]; 
  if ( delta != 0 ) 
   break; 
 } 
 if ( i >= match_length ) { 
  match_length = i; 
  *match_position = test_node; 
  if ( match_length >= LOOK_AHEAD_SIZE ) { 
   ReplaceNode( test_node, new_node ); 
   return( match_length ); 
  } 
 } 
 if ( delta >= 0 ) 
  child = &tree[ test_node ].larger_child; 
 else 
  child = &tree[ test_node ].smaller_child; 
 if ( *child == UNUSED ) { 
  *child = new_node; 
  tree[ new_node].parent = test_node; 
  tree[ new_node].larger_child = UNUSED; 
  tree[ new_node].smaller_child = UNUSED; 
  return( match_length ); 
  } 
  test_node = *child; 
 } 
} 
 
/* 
* This section of code and data makes up the blocked I/O portion of the 
* program. Every token output consists of a single flag bit, followed 
* by either a single character or a index/length pair. The flag bits 
* are stored in the first byte of a buffer array, and the characters 
* and index/length pairs are stored sequentially in the remaining 
* positions in the array. After every eight output operations, the 
* first character of the array is full of flag bits, so the remaining 
* bytes stored in the array can be output. This can be done with a 
* single fwrite() operation, making for greater efficiency. 
* 
* All that is needed to implement this is a few routines, plus three 
* data objects, which follow below. The buffer has the flag bits 
* packed into its first character, with the remainder consisting of 
* the characters and index/length pairs, appearing in the order they 
* were output. The FlagBitMask is used to indicate where the next 
* flag bit will go when packed into DataBuffer[ 0 ]. Finally, the 
* BufferOffset is used to indicate where the next token will be stored 
* in the buffer. 
 
*/ 
char DataBuffer[ 17 ]; 



int FlagBitMask; 
int BufferOffset; 
 
/* 
* To initialize the output buffer, we set the FlagBitMask to the first 
* bit position, can clear DataBuffer[0], which will hold all the 
* Flag bits. Finally, the BufferOffset is set to 1, which is where the 
* first character or index/length pair will go. 
*/ 
 
void InitOutputBuffer() 
{ 
 DataBuffer[ 0 ] = 0; 
 FlagBitMask = 1; 
 BufferOffset = 1; 
} 
 
/* 
* This routine is called during one of two different situations. First, 
* it can potentially be called right after a character or a 
length/index 
* pair is added to the DataBuffer[]. If the position of the bit in the 
* FlagBitMask indicates that it is full, the output routine calls this 
* routine to flush data into the output file, and reset the output 
* variables to their initial state. The other time this routine is 
* called is when the compression routine is ready to exit. If there is 
* any data in the buffer at that time, it needs to the flushed. 
* 
* Note that this routine checks carefully to be sure that it doesn't 
* ever write out more data than was in the original uncompressed file. 
* It returns a 0 if this happens, which filters back to the compression 
* program, so that it can abort if this happens. 
* 
*/ 
 
int FlushOutputBuffer() 
{ 
 if ( BufferOffset == 1 ) 
  return( 1 ); 
 Header.compressed_size += BufferOffset; 
 if ( ( Header.compressed_size ) >= Header.original_size ) 
  return( 0 ); 
 if ( fwrite( DataBuffer, 1, BufferOffset, OutputCarFile ) 
   !=BufferOffset ) 
   FatalError( "Error writing compressed data to CAR file" ); 
 InitOutputBuffer(); 
 return( 1 ); 
} 
 
/* 
* This routine adds a single character to the output buffer. In this 
* case, the flag bit is set, indicating that the next character is an 
* uncompressed byte. After setting the flag and storing the byte, 
* the flag bit is shifted over, and checked. If it turns out that all 
* eight bits in the flag bit character are used up, then we have to 
* flush the buffer and reinitialize the data. Note that if the 
* FlushOutputBuffer() routine detects that the output has grown larger 



* than the input, it returns a 0 back to the calling routine. 
*/ 
 
int OutputChar( data ) 
int data; 
{ 
 DataBuffer[ BufferOffset++ ] = (char) data; 
 DataBuffer[ 0 ] |= FlagBitMask; 
 FlagBitMask <<= 1; 
 if ( FlagBitMask == 0x100 ) 
  return( FlushOutputBuffer() ); 
 else 
  return( 1 ); 
} 
 
/* 
* This routine is called to output a 12-bit position pointer and a 4-
bit 
* length. The 4-bit length is shifted to the top four bits of the first 
* of two DataBuffer[] characters. The lower four bits contain the upper 
* four bits of the 12-bit position index. The next of the two 
DataBuffer 
* characters gets the lower eight bits of the position index. After 
* all that work to store those 16 bits, the FlagBitMask is shifted over, 
* and checked to see if we have used up all our bits. If we have, 
* the output buffer is flushed, and the output data elements are reset. 
* If the FlushOutputBuffer routine detects that the output file has 
* grown too large, it passes and error return back via this routine, 
* so that it can abort. 
*/ 
 
int OutputPair( position, length ) 
int position; 
int length; 
{ 
 DataBuffer[ BufferOffset ] = (char) ( length << 4 ); 
 DataBuffer[ BufferOffest++ ] |= ( position >> 8 ); 
 DataBuffer[ BufferOffset++ ] = (char) ( position & Oxff ); 
 FlagBitMask <<= 1; 
 if ( FlagBitMask == 0x100 ) 
  return( FlushOutputBuffer() ); 
 else 
  return( 1 ); 
} 
 
/* 
* The input process uses the same data structures as the blocked output 
* routines, but it is somewhat simpler, in that it doesn't actually 
have 
* to read in a whole block of data at once. Instead, it just reads in 
* a single character full of flag bits into DataBuffer[0], and passes 
* individual bits back to the Expansion program when asked for them. 
* The expansion program is left to its own devices for reading in the 
* characters, indices, and match lengths. They can be read in 
* sequentially using normal file I/0. 
*/ 
void InitInputBuffer() 



{ 
 FlagBitMask = 1; 
 DataBuffer[ 0 ] = (char) getc( InputCarFile ); 
} 
 
/* 
* When the Expansion program wants a flag bit, it calls this routine. 
* This routine has to keep track of whether or not it has run out of 
* flag bits. If it has, it has to go back and reinitialize so as to 
* have a fresh set. 
*/ 
 
int InputBit() 
{ 
 if ( FlagBitMask == 0x00 ) 
  InitInputBuffer(); 
 FlagBitMask <<= 1; 
 return( DataBuffer[ 0 ] & ( FlagBitMask >> 1 ) ); 
} 
 
/* 
* This is the compression routine. It has to first load up the look 
* ahead buffer, then go into the main compression loop. The main loop 
* decides whether to output a single character or an index/length 
* token that defines a phrase. Once the character or phrase has been 
* sent out, another loop has to run. The second loop reads in new 
* characters, deletes the strings that are overwritten by the new 
* character, then adds the strings that are created by the new 
* character. While running it has the additional responsibility of 
* creating the checksum of the input data, and checking for when the 
* output data grows too large. The program returns a success or failure 
* indicator. It also has to update the original_crc and compressed_size 
* elements in Header data structure. 
* 
*/ 
 
int LZSSCompress( input_text_file ) 
FILE *input_text_file; 
{ 
 int i; 
 int c; 
 int look_ahead_bytes; 
 int current_position; 
 int replace_count; 
 int match_length; 
 int match_position; 
 Header.compressed_size = 0; 
 Header.original_crc = CRC_MASK; 
 InitOutputBuffer(); 
 
 current_position = 1; 
 for ( i = 0 ; i < LOOK_AHEAD_SIZE ; i++ ) { 
   if ( ( c = getc( input_text_file ) ) == EOF ) 
    break; 
   window[ current_position + i ] = (unsigned char) c; 
   Header.original_crc = UpdateCharacterCRC32( Header.original_crc, c ); 
 } 



 look_ahead_bytes = i; 
 InitTree( current_position ); 
 match_length = 0; 
 match_position = 0; 
 while ( look_ahead_bytes > 0 ) { 
  if ( match_length > look_ahead_bytes ) 
   match_length = look_ahead_bytes; 
  if ( match_length <= BREAK_EVEN ) { 
   replace_count = 1; 
   if ( ! OutputChar( window[ current_position ] ) ) 
    return( 0 ); 
  } else { 
   if ( !OutputPair( match_position, match_length - 
                     ( BREAK_EVEN + 1 ) ) ) 
    return( 0 ): 
   replace_count = match_length; 
  } 
  for ( i = 0 ; i < replace_count ; i++ ) { 
   DeleteString( MOD_WINDOW( current_position + LOOK_AHEAD_SIZE ) ); 
   if ( ( c = getc( input_text_file ) ) == EOF ) { 
    look ahead bytes--; 
   } else { 
    Header.original_crc = 
     UpdateCharacterCRC32( Header.original_crc, c ); 
    window[ MOD_WINDOW( current_position + LOOK_AHEAD_SIZE ) ] = 
       (unsigned char) c; 
   } 
   current_position = MOD_WINDOW( current_position + 1 ); 
   if ( current_position == 0 ) 
    putc( '.', stderr ); 
   if ( look_ahead_bytes ) 
    match_length = AddString( current_position, &match_position ); 
  } 
 }; 
 Header.original_crc ^= CRC_MASK; 
 return( FlushOutputBuffer() ); 
} 
 
/* 
* This is the expansion routine for the LZSS algorithm. All it has to 
do 
* is read in flag bits, decide whether to read in a character or a 
* index/length pair, and take the appropriate action. It is responsible 
* for keeping track of the crc of the output data, and must return it 
* to the calling routine, for verification. 
*/ 
 
unsigned long LZSSExpand( output ) 
FILE *output; 
{ 
 int i; 
 int current_position; 
 int c; 
 int match_length; 
 int match_position; 
 unsigned long crc; 
 unsigned long output_count; 



 
 output_count = 0; 
 crc = CRC_MASK; 
 InitInputBuffer(); 
 current_position = 1; 
 while ( output_count < Header.original_size ) { 
  if ( InputBit() ) { 
   c = getc( InputCarFile ); 
   putc( c, output ); 
   output_count++; 
   crc = UpdateCharacterCRC32( crc, c ); 
   window[ current_position ] = (unsigned char) c; 
   current_position = MOD_WINDOW( current_position + 1 ); 
   if ( current_position == 0 && output != stdout ) 
    putc( '.', stderr ); 
  } else { 
   match_length = getc( InputCarFile ); 
   match_position = getc( InputCarFile ); 
   match_position |= (match_length & Oxf ) << 8; 
   match_length >>= 4; match_length += BREAK_EVEN; 
   output_count += match_length + 1; 
   for ( i = 0 ; i <= match_length ; i++ ) { 
    c = window[ MOD_WINDOW( match_position + i ) ]; 
    putc( c, output ); 
    crc = UpdateCharacterCRC32( crc, c ); 
    window[ current_position ] = (unsigned char) c; 
    current_position = MOD_WINDOW( current_position + 1 ); 
    if ( current_position == 0 && output != stdout ) 
     putc( '.', stderr ); 
   } 
  } 
 } 
 return( crc ^ CRC_MASK ); 
} 
/*************************** End of CARMAN.C *************************/ 

Chapter 13 
Fractal Image Compression  
DCT-based JPEG compression is quite effective at low or moderate compression ratios, 
up to ratios of 20 or 25 to 1. Beyond this point, the image becomes very “blocky” as the 
compression increases and the image quality becomes too poor for practical use. JPEG 
obtains high compression ratios by cutting off the high frequency components of the 
image. This can also introduce very visible artifacts, in particular for sharp edges in the 
image. This is known as Gibb’s phenomenon. The practical limit on the compression 
ratio in turns implies a limit on the number of images that can fit on a hard disk or a CD-
ROM. As such, the storage space requirements of graphics applications continue to 
increase at a very fast rate.  

Another drawback of JPEG compression is its resolution dependence. In order to “zoom-
in” on a portion of an image and to enlarge it, it is necessary to replicate pixels. The 
enlarged image will exhibit a certain level of “blockiness” which soon becomes 



unacceptable as the expansion factor increases. Because of this problem, it is sometimes 
necessary to store the same image at different resolutions, thus wasting storage space. 

So, although JPEG is now a well-established standard for lossy image compression, it has 
its limits and alternative compression methods must be considered. Wavelet-based 
methods are gaining popularity. They are similar in spirit to the DCT methods but do not 
suffer from some of its shortcomings. Methods based on vector quantization (VQ) are 
also very promising. But, in this chapter we will look in more detail at yet another 
technique: fractal image compression. 

A brief history of fractal image compression 

The term fractal was first used by Benoit Mandelbrot to designate objects that are self-
similar at different scales. Such objects have details at every scale. A well-known 
example is the Mandelbrot set, which is described by a very simple equation yet exhibits 
an infinite variety of detail. This can be viewed as an extreme form of compression: the 
equation itself can be described with a few bits of information or implemented in a very 
short program, but the resulting image would need an infinite amount of bits to be 
represented as a set of pixels. The popular FractInt program can generate very delicate 
pictures from one-line formulas. 

Mandelbrot did not actually consider fractals for compression, but he showed that they 
could be used for modeling real objects such as clouds, trees or mountains. Such objects 
reveal more detail whenever you look closer at them. Mandelbrot’s book The Fractal 
Geometry of Nature first published in 1977 attracted a lot of attention and the word 
fractal became very popular. The images generated by fractal modeling were very 
realistic looking and these techniques are now commonly used in many applications 
using computer-generated images. 

Michael Barnsley and his coworkers at the Georgia Institute of Technology were the first 
to recognize the potential interest of fractal methods for image compression. Barnsley 
developed the theory of Iterated Function Systems (IFS) first introduced by J. Hutchinson 
in 1981. After the publication of Barnsley’s book Fractals Everywhere in 1988, and his 
paper in the January 1988 issue of BYTE magazine, fractal compression became a very 
fashionable subject. The interest in this technique was aroused by the fantastic 
compression ratios claimed by Barnsley, up to 10,000 to 1. Together with Alan Sloan, 
Barnsley founded Iterated Systems, Inc. and obtained US patent 4,941,193 on image 
compression using IFS. 

Unfortunately, the fantastic compression ratios could be obtained only on specially 
constructed images, and only with considerable help from a person guiding the 
compression process. This process is also known as the “graduate student algorithm,” 
consisting of giving a graduate student an office and a graphics workstation, locking the 
door, waiting until the student has found a good IFS for the image, and opening the door. 
It was impossible to completely automate the compression process, even with a 
supercomputer. Thus, IFS-based compression turned out to be impractical. 



A breakthrough was made in 1988 by Arnaud Jacquin, one of Barnsley’s Ph.D. students. 
Instead of trying to find an IFS for a complete image, Jacquin had the idea of partitioning 
the image into non-overlapping ranges, and finding a local IFS for each range. This 
transformed the problem into a manageable task, which could be automated. For his 
doctoral thesis, Jacquin developed the theory of Partitioned Iterated Function Systems 
(PIFS) and implemented a version of his algorithm in software. Yuval Fisher, Roger Boss, 
and Bill Jacobs were also among the first to make public contributions to the theory of 
PIFS. 

In 1991, Barnsley and Sloan obtained US patent 5,065,447 on this technique. Their 
company, Iterated Systems, sells software and hardware products using it, but they have 
not made public the details of their technology. In particular, the FIF (Fractal Image 
Format) used by the Iterated Systems products has not been publicly described. Possibly 
because of this, and of the patents attached to the method, fractal image compression is 
not yet used in practice as much as other techniques. However fractal compression is still 
a subject of active research, and it has already demonstrated its superiority at least for 
applications where very high compression ratios are required. 

PIFS are also named Local Iterated Function Systems (LIFS), and Barnsley uses the term 
“Fractal Transform.” They all refer to the same technique. Barnsley’s terminology may 
be misleading because the Fractal Transform is not a transform in the same sense as a 
Fourier Transform or a Discrete Cosine Transform, so we will use the PIFS terminology 
in the rest of this chapter. All practical implementations of fractal image compression, 
including the program given later in this chapter, are based on PIFS. To understand better 
what a PIFS is, let us first come back to the technique which precedeed it, based on IFS. 

What is an Iterated Function System? 

Mandelbrot had observed that complex images could be obtained from simple formulas. 
Given a formula, it is relatively easy to derive the corresponding image. Barnsley had the 
idea of going in the other direction, from the image to the formula. When this is possible, 
it can result in fantastic compression ratios. Instead of representing the image as a long 
sequence of pixel values, the image can be reconstructed from a formula, which can be 
encoded in a much smaller number of bytes. Let’s take an example which is not one of 
fractal compression but which can convey the right idea.  

Assume that you want to represent a black and white image consisting of a black circular 
disk on a white background. For an image of a given resolution (a given number of pixels 
in the horizontal and vertical dimensions), you can enumerate all the pixels which are 
inside the disk. Alternatively, you can give an equation for the disk, specifying it as the 
set of points (x, y) which satisfy: 

(x-a)2+ (y-b)2 < r2 

where r is the radius of the disk and (a, b) its center. This equation is sufficient to 
reconstruct the image of the disk. Moreover, the image can be reconstructed at any 



resolution—this would not be true for an explicit list of pixels. A similar difference exists 
between scalable character fonts (TrueType fonts in Microsoft Windows) and fonts that 
are made of a fixed number of pixels. Each character in a scalable font is described by a 
formula for drawing the character; a character in a fixed font is just a set of pixels.  

Unfortunately, real-world images almost never let themselves be represented as such 
simple equations. Given an image, it is generally impossible to find a simple formula 
representing the image exactly. Barnsley’s idea was to take advantage of the self-
similarity present in an image to find an approximate representation of the image as a 
fractal, like Mandelbrot’s fractals which exhibit self-similarity at different scales. Also, 
instead of giving an explicit equation satisfied by all points of the image, the fractal is 
implicitly defined as the fixed-point solution of an Iterated Function System. The theory 
of IFS is outside the scope of this book, so we will only mention very briefly some of the 
mathematics involved without giving precise definitions. 

Basic IFS mathematics 

A mapping from a set to itself is said to be contractive if it reduces the distances: the 
distance between f(x) and f(y) is smaller than the distance between x and y. For example, 
the function f(x) = x/2 defined on the set of real numbers is contractive. The Contractive 
Mapping theorem states, in short, that a contractive mapping has a unique fixed point, 
that is, a value x such as f(x) = x. Moreover, the fixed point can be obtained by starting 
from any point x0 and computing the sequence: 

x1= f(x0) 
x2= f(x1) = f(f(x0)) 
etc... 

The sequence converges to the unique fixed point. For example, starting with the value 
x0= 1 and applying the function f(x) = x/2 iteratively, we get the sequence 1, 1/2, 1/4, 1/8, 
etc... which converges to the value 0. The example was given in the set |R of the reals, but 
the Contractive Mapping theorem also applies to higher dimensions, in particular for two 
dimensional images. 

An Iterated Function System consists of a finite set of contractive mappings w1... wN on 
the plane |R2. The IFS can be applied to a black and white image as follows. Each (black) 
point x of the image is mapped to N points w1(x) ... wN(x). The union of all the resulting 
points forms itself another black and white image. So the IFS transforms an image into 
another image. Hutchinson proved that in some well defined sense, the IFS is itself a 
contractive mapping, and thus it has a unique fixed point within the set of all black and 
white images. So by starting from an arbitrary image and applying the IFS iteratively, the 
process converges to a unique image which depends only on the IFS and not on the initial 
image. 

This is in essence how fractal decompression works. The decompressor need only know 
the description of the IFS, and can reconstruct an image from this. The method works 
regardless of the exact form of the IFS, as long as it is contractive. The IFS can be viewed 



as a special copy machine which creates N reduced copies of the input image, and pastes 
them together. The copies are reduced since each wi is contractive. By feeding the output 
of this copying machine into itself in a feedback loop, the images generated at each step 
get closer and closer to each other and the process converges to the unique fixed-point 
image, also called the attractor of the IFS. 

The resulting image is a fractal, since it contains reduced copies of itself at every scale. 
More detail can be seen if we zoom on a portion of the image. Because of this self-
similarity property, image compression using IFS deserves the name of fractal image 
compression. 

We have only mentioned black and white images so far, but the theory can be extended to 
grayscale images. Color images can themselves be encoded as three grayscale images, 
one for each of the red, green, and blue components (just like the JPEG algorithm does). 

Up to now, we have only considered the decompression process. The compression 
process is to find a good IFS for a given image. This is known in the fractal compression 
literature as “the inverse problem.” This problem is vastly more complicated than the 
decompression process. 

Image compression with Iterated Function Systems 

An IFS provides a good approximation of a target image I if the fixed point of the IFS is 
an image closely resembling I. The goal is to find a set of contractive mappings w1 ... wN 
so that the union W of all these mappings has a fixed point close to I. 

It is hopeless to find W by trying some mappings wj, computing the resulting fixed point, 
comparing it with I, and starting again with other mappings until a close match is found. 
We will instead try to find a contractive mapping W such that W(I) is close to I. 
Barnsley’s Collage Theorem states that if W(I) is sufficiently close to I, then the fixed 
point 

 

is also close to I. The image W(I) is composed of a collage (union) of all the reduced 
images wj (I). This is how the theorem got its name. 

So with the help of the Collage Theorem, the “inverse problem” can be restated as 
finding a good collage for an image. This is where the real difficulties start. It is generally 
not feasible, even with enormous computing power, to find a good collage automatically, 
thus human intervention is required. A person must guide the compression process by 
segmenting the original image so that each segment looks like a reduced copy of the 
whole image, and so that the union of all segments covers the original image as best as 
possible. For example, the person determines that a branch of a tree can be viewed as a 
reduced copy of the whole tree, possibly distorted. 



Once the segments have been defined, the computer can derive the wj mappings and thus 
an IFS for the image. There is a lot of flexibility in the choice of the mappings, as long as 
they are contractive, but affine functions are generally used for simplicity. In one 
dimension, an affine function has the form 

f(x) = a * x  +  b 

where a and b are constants. In two dimensions, the image of a point X = (x, y) is  

f(X) =  A * X + B 

where A is a two-dimensional matrix and B a constant vector. The matrix A determines a 
rotation, skew and scaling for the image, and the vector B determines a translation. The 
contractivity condition on f can be expressed as conditions on the coefficients of the 
matrix A: the scaling factor must be less than one.  

After all the affine transformations have been selected, the IFS can be represented in a 
compact form by encoding the coefficients of all the transformations. If a good collage 
has been found, the total number of affine transformations is much smaller than the total 
number of pixels in the image, so encoding the coefficients requires far fewer bits than 
enumerating all the pixel values. This is why encoding an image as an IFS is actually a 
form of data compression. The compression is lossy because the attractor of the IFS is in 
the best case close to the original image but not strictly equal to it. 

The main difficulty of this compression process is to find within the image reduced 
copies of the whole image. Real-world images often contain some self-similarity, but 
only between selected portions of the image. The breakthrough made by Jacquin was to 
partition the input image, and to find a local IFS for each partition. With this new method, 
it finally became possible to completely automate the compression process and 
furthermore to do it in a reasonable amount of time. 

Image compression with Partitioned Iterated Function Systems 

We have seen in chapter 8 “Sliding Window Compression” that the LZ77 algorithm 
works by finding redundancy within the input text in the form of common phrases. 
Similarly, some image compression algorithms such as Vector Quantization and Fractal 
compression with PIFS work by finding redundancy within the input image in the form of 
similar image portions. The parallel between the text and image compression methods is 
not complete since the former are lossless, whereas the latter only look for approximate 
matching and are thus lossy.  

Vector Quantization uses a dictionary (or codebook) of pixel patterns. The input image is 
partitioned into small pixel blocks, and each block is encoded as a reference to the 
dictionary pattern which most resembles the block. A block has the same size as the 
corresponding dictionary pattern, but all the blocks need not have the same size. The 
decoder must have a copy of the dictionary, and can easily reconstruct an approximation 
of the original image by assembling the dictionary patterns specified by the encoder. 



Fractal compression with PIFS is similar to Vector Quantization, but in this case, there is 
no external dictionary. The input image acts as its own dictionary. The decoder doesn’t 
have this image initially, but it can reconstruct it gradually by iterating a PIFS. Thus the 
dictionary is only a “virtual codebook”. 

The compressor first partitions the input image into a set of non-overlapping ranges. The 
ranges are generally squares or rectangles, but good results can also be obtained with 
other shapes such as triangles. For each range, the compressor looks for a part of the 
input image called a domain, which is similar to the range. The domain plays the role of 
the pixel pattern in Vector Quantization, but here it must be larger than the range to 
ensure that the mapping from the domain to the range is contractive in the spatial 
dimensions.  

 
Note:  Barnsley has reversed the meanings of range and domain, but we prefer keeping the established 
terminology: a transformation maps from a domain to a range.  

 

In general, the compressor looks for domains that are twice as large as the range, but 
other ratios are possible. As opposed to ranges, domains may overlap.  

The test file LISAW.GS is shown in Figure 13.1. The same file compressed with fractal 
compression at a compression ratio of 96% is shown in Figure 13.2. 

 
Figure 13.1  The original LISAW.GS (64000 bytes). 

 
Figure 13.2  LISAW with fractal compression (2849 bytes). 

In Figure 13.2, two ranges and the two corresponding domains selected by the 
compression algorithm have been highlighted. The algorithm has found similarity 
between two unrelated portions of the image: a range below the eye and a domain, twice 
as large, on the forehead. The compressor has also found self-similarity within one 
domain, in the chin. In the latter case, the range and the domain overlap. This kind of 
self-similarity is quite frequent in real-world images, and fractal compression takes 
advantage of this.  

To assess the similarity between a domain D and a range R, the compressor finds the best 
possible mapping w from the domain to the range, so that the image w(D) is as close as 
possible to the image R. As we have seen previously, affine transformations are 
convenient for this purpose, but non-linear transformations could also be used as long as 



they are contractive. Two-dimensional transformations were used for black and white 
images. Three dimensions are needed for grey scale images: two for the spatial 
components and one for the luminance component. An affine map is then composed of a 
geometric part which maps the domain into the range, and of a luminance part which 
changes the pixel intensity values. 

More precisely, a point (x, y) with luminance z belonging to domain Di is mapped into: 

 

The constants ai,j and di,j specify the geometric part, the constants ci and bi specify the 
luminance part. ci represents a contrast factor, which must be smaller than one to make 
sure that the mapping is contractive in the luminance dimension. bi represents a 
brightness offset applied after the contrast has been reduced. 

In practice, the compressor does not have to determine explicitly the constants ai,j and di,j 
for each domain. They are implicitly defined by the relative size, orientation and position 
of the domain with respect to the range. In particular, if the compressor only looks for 
domains that are exactly twice as large as the range, the scaling factor which would 
normally be derived from the ai,j values is already imposed and is equal to 0.5. Similarly, 
if domains and ranges are restricted to be squares, there are only 8 possible orientations 
of the domain relative to the square: 4 rotations and 4 symmetries. Thus 3 bits are 
sufficient to encode this orientation. Finally, the translation constants di,j are determined 
by the position of the top left corner of the domain. 

The simplifications described above may seem too drastic, but they are actually necessary 
to reduce the complexity of the “inverse problem” to manageable proportions. In theory, 
ranges and domains can have potato shapes instead of a square shape, the contractive 
mappings can be non linear instead of being affine maps, etc... However the total search 
space would become much too large and as a result the compression would be too slow 
for practical use. But even with simple affine maps, finding the optimal domain for a 
given range can still be an expensive operation. 

For a given range R, the compressor must examine a number of possible domains. For 
each such domain D, the compressor must find the optimal affine map from D to R. The 
best one is the map w which minimizes the distance between the image R and the image 
w(D), where the distance is taken in the luminance dimension, not the spatial dimensions. 

Such a distance can be defined in various ways, but to simplify the computations it is 
convenient to use the Root Mean Square (RMS) metric (the program GSDIFF.C given in 
the previous chapter computes such a distance). For a given range and and a given 
domain, the RMS distance depends only on the contrast factor ci and the brightness offset 
bi The distance is minimum when the partial derivatives with respect to these two 



variables are both zero. ci and bi can thus be obtained by solving two simple linear 
equations, as we will see later in our sample fractal compression program. 

Once the RMS distances between the range and all selected domains have been 
determined, the compressor chooses the domain with the smallest distance, encodes the 
corresponding affine map, and goes on working on the next range. 

Fractal image decoding 

The Partitioned Iterated Function System created with the above algorithm consists of a 
list of affine maps, each map being restricted to a specific range. Since each map is 
contractive in the luminance dimension (the contrast factor is less than one), we can 
apply the Contractive Mapping theorem to decode the image. Starting from an arbitrary 
image, for example a completely black image, the decoder can apply the PIFS iteratively. 
This process converges to the fixed point of the PIFS. If the compressor has found a good 
PIFS for the image, that is, if the collage of all the transformed domains is close to the 
original image, then the fixed point of the PIFS is also close to this image.  

To perform one iteration of the PIFS, the decoder takes the list of all affine maps and 
applies each one in turn. This transforms a set of domains into a set of ranges. Since the 
ranges have been selected to be non-overlapping and to cover the whole input image, a 
new complete image emerges as a result. The decoder can then repeat the whole process, 
until convergence is achieved, that is, until there is very little difference between the 
input image and the output image. Convergence is generally obtained in 8 to 10 iterations. 

Figure 13.3 shows the result of decoding the LISAW image with our sample program 
after 1, 2, 3 and 8 iterations, starting from an initially black image. 

 

 

 

 
Figure 13.3  Image decoding after 1, 2, 3 and 8 iterations 



Even after only one iteration, the image is recognizable. The minimum range size 
selected by the encoder was 4 pixels wide, and such ranges are clearly visible, giving a 
“blocky” aspect to the image. However since the affine maps are also contractive in the 
spatial dimensions (the domains are twice as large as the ranges), more detail is created at 
each iteration. After the second iteration, the remaining blocks are only two pixels wide. 
After 8 iterations, convergence has been achieved, and the resulting image is extremely 
close to the original image. (The compressor was set to best quality for this image.)  

We can now better understand why the affine maps were chosen to be contractive in both 
the spatial and luminance dimensions. The contraction in luminance (reduction of 
contrast) was essential to ensure convergence of the decoding process. The spatial 
contraction is useful to create detail in the image at all scales, and thus get a much better 
approximation of the original image. Without spatial contraction, the decoding process 
would still converge, but it would converge to a a very “blocky” image, without any 
contrast inside each block. With spatial contraction the contrast across ranges, initially 
provided by the brightness offset components of the affine maps, is propagated within 
each range to smaller and smaller scales after each iteration. 

Close inspection of the first image of Figure 13.3 reveals that sometimes detail is visible 
even within a range. Since the domains of the initial image are uniformly black, each 
range after the first iteration should have a uniform grey level, given by the brightness 
offset in the affine map. However to accelerate the convergence of the decoding process, 
our sample program uses the same buffer for both input and output images, as we will see 
later. Thus the detail visible within a range after the first iteration is only a side effect of 
our particular implementation. 

Resolution independence 

To reconstruct an image, the decoder starts its iterations with an arbitrary image of the 
same size as the original image. But what happens if the decoder starts with an initial 
image that is twice as large? The result of the decoding process will be also an image 
twice as large as the original image. However, since the affine maps used to encode the 
image do not depend on its resolution, the decoded image will not have the “blocky” 
aspect that would have been obtained if we had simply replicated the pixels of the 
original image. It will instead still contain detail at every scale.  

Figure 13.4 shows a detail of the original LISAW image, enlarged 8 times. The 8x8 pixel 
blocks are clearly visible. Figure 13.5 shows the same part of the image, but decoded 
with scale factor 8. 

 
Figure 13.4  Detail of original LISAW enlarged 8 times. 



 
Figure 13.5  Detail of LISAW decompressed with scale factor 8. 

The image obtained through fractal decoding is much more natural-looking. The 
decoding process has created artificial detail which was not present in the original image, 
but which looks as if we had really zoomed on the original image. This is a very useful 
feature, but it does have limits. If we try to zoom at an enormous scale factor, we will not 
end up seeing the atoms at the surface of LISAW’s skin, but rather we will be looking at 
detail which is completely artificial.  

The fantastic compression ratios put forward by some advocates of fractal compression 
may have to be taken with a grain of salt in some cases. For example, assume that an 
image of 320x200 pixels, with an original size of 64 KB, has been compressed with a 
ratio of 32 to 1, resulting in a compressed image of 2 KB. Now, decode this image with a 
scale factor of 4. This creates an image of 1280x800 pixels, with an uncompressed size of 
64x16 = 1024 KB. It would be incorrect to state that we have achieved a compression 
ratio of 1024 / 2 = 512 to 1. The reason is that the uncompressed image contains artificial 
detail which was not present in the original image. The original information is still 
compressed with a ratio of 32 to 1; the rest of the information has been created artificially 
by the decoding process. 

The sample program 

The sample program used to demonstrate fractal compression in this chapter is found in 
the C source file FRAC.C. It must be compiled and linked with the standard support 
source files, BITIO.C, ERRHAND.C, and either MAIN-C.C for compression or MAIN-
E.C for expansion.  

The fractal compression program optionally takes additional parameters on the command 
line: 

*  The quality value, ranging from 0 to 20. It is used as average tolerated error 
between the original image and its uncompressed version. Small values result in 
better quality images, large values result in better compression ratios. The default 
value has been arbitrarily chosen as 2.  
*  The domain density factor, ranging from 0 (fastest compression) to 2 (best but 
very slow compression). This parameter affects the size of the domain pool that 
will be searched.  
*  Horizontal and vertical images sizes (default 320 x 200). Both sizes must be 
multiples of 4 in this implementation.  

The command syntax for the compression program is:  

FRAC infile outfile [-q quality] [-d density] [-h h_size] [-v v_size] 



The image dimensions and the domain density factor are encoded in the compressed file, 
so the expansion program doesn’t need these parameters on the command line. The 
syntax for expansion is:  

FRAC-E infile outfile [-i iterations] [-s scale] 

The optional parameters are:  

*  The number of iterations, ranging from 1 to 15. The image quality does not 
improve much after 8 to 10 iterations. The default is 8.  
*  The scale factor (decompressed size divided by original size). The default is 1.  

The main compression module 

A summarized version of the main compression module is shown below.  

void CompressFile (FILE *input, BIT_FILE *output, int argc, char 
*argv[]) 
{ 
 
    /* Allocate and initialize the image data and cumulative image 
       data: */ 
    compress_init(x_size, y_size, input); 
 
    /* Initialize the domain size information as in the 
       decompressor: */ 
    dominfo_init(x_size, y_size, dom_density); 
 
    /* Classify all domains: */ 
    for (s = MIN_BITS; s <= MAX_BITS; s++) { 
        classify_domains(x_size, y_size, s); 
    } 
 
    /* Output the header of the compressed file. */ 
    OutputBits(frac_file, (uns_long)x_size, 16); 
    OutputBits(frac_file, (uns_long)y_size, 16); 
    OutputBits(frac_file, (uns_long)dom_density, 2); 
 
    /* Compress the whole image recursively */ 
    traverse_image(0, 0, x_size, y_size, compress_range); 
 
    /* Free all dynamically allocated memory: */ 
    compress_cleanup(y_size); 
} 

We first allocate and initialize all the necessary data structures. Then we classify all the 
possible domains. This speeds up the compression process considerably, as we will see 
later. After this, we store the image dimensions and the domain density factor in the 
compressed output file, since these parameters are needed by the decompressor.  



The bulk of the work is done in the call of the traverse_image() function, which partitions 
the image recursively, and compresses each partition. In the end we free all the 
dynamically allocated data structures. 

Initialization 

The initialization function compress_init() first allocates and initializes arrays for the 
image and domain data. Since the domains are twice as large as the ranges, each pixel in 
the domain image is the sum of 4 pixels in the range image. We don’t average (divide by 
4) to keep an integer format without losing precision.  

To speed up the compression process, we initialize cumulative tables for the image and 
domain data. We often have to compute the sum of pixel values or squared pixel values 
in a range or domain. To avoid repeated computations, we maintain for each pixel the 
sum of all pixel values strictly above and to the left of the given pixel. Then we can easily 
obtain the sum of all pixel values within a square region by adding the cumulative values 
at the top left and bottom right corners, and subtracting the cumulative values at the top 
right and bottom left corners. This is done in the code by the region_sum() macro. 

To reduce the memory requirements, some tables are maintained only for pixels of even 
coordinates. In particular, domains are restricted to have their top left pixel with even 
coordinates. To simplify some algorithms, ranges are also restricted to have a size which 
is a multiple of four, hence the width and height of the image must also be multiple of 
four in our simple implementation. 

In order to get the best possible image quality, the compressor could compare a given 
range with all possible domains. However this would be extremely slow. For an image of 
320x200 pixels with ranges 4 pixels wide and domains 8 pixels wide, there are 4000 
ranges and 313x193 = 60409 domains, if the domains can start on any pixel boundary. 
Thus 241,636,000 domain-range comparisons would have to be made, each comparison 
involving a least-square regression analysis to find the optimal affine map. 

 
Note:  Our sample program does not attempt comparisons in all 8 possible orientations of the range relative 
to the domain, otherwise this would increase the compression time by yet another factor.  

 

To avoid such a lengthy computation, we reduce the size of the domain pool using the 
domain density parameter. For a density value of zero, the domains start on a boundary 
multiple of their size, thus the domains do not overlap. When compression time is not an 
issue and we are looking for the best possible image quality, the domain step (distance 
between two consecutive domains) is divided by 2 for a density of 1, or by 4 for a density 
of 2. The function dominfo_init(), which is common to the compressor and the 
decompressor, takes this into account.  



Domain classification 

Despite the reduction of the domain pool described above, compression is still very slow 
compared to other methods such as DCT based algorithms. Another significant speed 
improvement can be obtained by avoiding domain-range comparisons which have little 
probability of providing a good match. We assign a class number to each range and each 
domain, and we compare only members of the same class. To avoid repeated 
computations, all domains are classified only once at the beginning of the program, by 
the function classify_domains().  

Several methods are possible for classifying ranges and domains. In our sample program, 
the class is determined in the function find_class() by the ordering of the image 
brightness in the four quadrants of the range or domain. There are 24 possible orderings, 
hence 24 classes. For each quadrant we compute the number of brighter quadrants; this is 
sufficient to uniquely determine the class. Class 0 has quadrants in order of decreasing 
brightness; class 23 has quadrants in order of increasing brightness. 

For simplicity and speed reasons, a range and a domain are compared only with the same 
orientation. In addition, the contrast factor of affine maps is constrained to be non-
negative. After application of such an affine map, the relative ordering of the image 
brightness in the four quadrants is unchanged. Thus a domain and a range are likely to 
match well only if they belong to the same class. The validity of this argument can be 
confirmed in practice by compiling the program with the option -
DCOMPLETE_SEARCH. This removes the class restrictions, dramatically increases the 
compression time, but improves the image quality only very marginally. 

Since ranges and domain are compared only with the same orientation, the affine maps 
are composed in the spatial dimensions of just a scaling by 0.5 and a translation. There is 
no rotation or symmetry. Thus we do not have to output in the compressed file 3 bits per 
affine map indicating the selected orientation. 

Image partitioning 

The encoder can arbitrarily partition the input image into ranges, as long as the 
decompressor is able to reconstruct the same partition. For simplicity, our sample 
program uses only square ranges with sizes that are powers of two. We could have further 
simplified the algorithm by using only ranges 4 pixels wide, but this would not have 
taken advantage of flat portions of the image, which can be covered well by larger ranges. 
On the other hand, using ranges that are all 16 pixels wide or larger would not achieve a 
good quality for the decoded image. Regions of the image with fine detail generally have 
to be covered with small ranges.  

To obtain a good balance between compression ratio and image quality, the function 
compress_range() first attempts to find a good match for a range 16 pixels wide. If there 
is no domain which is close enough to the range, that is, if the RMS distance between the 
range and any domain is greater than the quality value chosen by the user, then the range 



is split into 4 ranges, and the process is repeated recursively for each of them. When a 
range is split, the encoder outputs a single zero bit into the compressed stream, to let the 
decoder know about the need for a split and thus follow the same partitioning algorithm. 

In theory, we could allow range splitting up to ranges that consist of a single pixel. This 
would ensure a perfect quality for the image if the quality factor is selected as zero. For 
the affine maps, it would be sufficient to chose a null contrast coefficient, and a 
brightness offset equal to the original pixel value. This would have the additional 
advantage that image decoding would converge in a single iteration. Unfortunately, all 
dreams about compression ratios would be gone, since the original file would be 
expanded instead of being compressed! Therefore it makes sense to impose a minimum 
size of 4x4 pixels for each range. 

The extreme example given above shows, by the way, that it is always possible to find a 
Partitioned Iterated Function System for a given image; the real problem is to find a good 
one, which can encode an image with good quality while still offering decent 
compression ratios. 

Since the original image is generally not a square, the function traverse_image() first 
encodes the largest square fitting in the image, then the two rectangles respectively on the 
right and below the square. To simplify the algorithm, the size of the square is 
constrained to be a power of two. If the square is larger than 16x16 pixels, the square is 
split recursively. We do not attempt to find good matches for regions larger than 16x16 
pixels, since it is generally a waste of time: no domain is close enough. 

Finding optimal affine maps 

The function find_map() finds the best affine map from a range to a domain. This is done 
by minimizing the RMS distance between range and mapped domain as a function of the 
contrast and brightness. Actually, we use the sum of squared errors instead of the RMS 
value to simplify the algorithm and avoid a square root operation. This error value is:  

 

where c is the contrast factor, b the brightness offset, n the number of pixels in the range, 
di the pixel values in the domain and ri the pixel values in the range. The optimal values 
of c and b are obtained when the partial derivatives E(c,b) with respect to c and b are both 
null. The resulting linear equations are easily solved. The values of c and b obtained in 
this manner are floating point numbers. To ensure a compact encoding of the affine map, 
these values are quantized and written to the output file as integers using 4 bits for the 
contrast and 6 bits for the brightness. Using 5 and 7 bits or more would provide a 
marginally better image quality at the expense of the compression ratio. 



The error value E(c,b) is computed using the quantized values of c and b, since the 
decoder will only know these and not the original floating point values. The error value 
must depend on the affine map actually selected, not the theoretical best map. There can 
be a large difference between the optimal contrast and the actual selected contrast since 
before the quantization, c is restricted to the interval 0.0—1.0. The lower bound is needed 
because of our simple domain classification mechanism, the upper bound is needed to 
ensure that the affine map is contractive in the luminance dimension. 

The decompression module 

The decompression code uses the same traverse_image() function as the compressor, to 
ensure that both use exactly the same partitioning strategy. The only difference is that 
during the traversal, the decoder only reads the encoded affine maps; it does not actually 
generates the output image at this step.  

Once the affine maps have been read in, the decoder starts with a random initial image 
and calls refine_image() a number of times selected by the user. For each iteration, 
refine_image() goes through all the maps and applies them to the current image. The 
“pure” method would compute a separate new image and then swap the roles of the old 
and new image. However the convergence towards the final image happens to be quicker 
if we overwrite the same image while applying the affine maps; for the same quality of 
reconstructed image we need fewer iterations. Overwriting the same image also reduces 
the memory requirements since we need only a buffer for one image instead of two. 

After the image has been reconstructed, the decoder calls the function 
average_boundaries() to smooth the transition between adjacent ranges. This is only done 
for large ranges (8x8 and 16x16), since averaging the small 4x4 ranges can degrade the 
image quality. 

The complete code listing 

The complete listing of FRAC.C follows.  

/*********************** Start of FRAC.C  *********************** 
 * 
 * This is the FRAC module, which implements a graphics fractal 
   compression 
 * program.  It needs to be linked with the standard support routines. 
 * Copyright 1995 Jean-loup Gailly 
 */ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "bitio.h" 
#include "errhand.h" 
 
#ifdef unix 
#  define float double /* better accuracy but more memory usage */ 



#endif 
 
char *CompressionName = "Fractal compression"; 
char *Usage = 
"infile outfile [-q quality] [-d density] [-h h_size] [-v v_size]\n\ 
   quality from 1..20, domain density from 0..2\n\ 
Decompression parameters:\n\ 
    infile outfile [-i iterations] [-s scale]\n"; 
 
typedef unsigned char image_data; 
typedef unsigned long uns_long; 
 
/* 
 * Maximum gray level in an image 
 */ 
#define MAX_GREY 255 
 
/* 
 * Number of classes. Each class corresponds to one specific ordering 
 * of the image brightness in the four quadrants of a range or domain. 
 * There are 4*3*2 = 24 classes. 
 */ 
#define NCLASSES 24 
 
/* 
 * Minimum and maximum number of bits for the side of a range. The 
actual 
 * range sizes are between 1<<MIN_BITS and 1<<MAX_BITS. To simplify the 
 * implementation and avoid ridiculously small ranges, MIN_BITS must be 
   >= 2. 
 * This implementation also requires MAX_BITS <= 7. 
 */ 
#define MIN_BITS 2 
#define MAX_BITS 4 
 
/* 
 * Maximum contrast factor in a range to domain mapping. 
 */ 
#define MAX_CONTRAST 1.0 
 
/* 
 * Bit sizes for encodings of contrast and brightness in an affine map. 
 * Using smaller sizes increases compression and degrades image quality. 
 */ 
#define CONTRAST_BITS    4 
#define BRIGHTNESS_BITS  6 
 
#define MAX_QCONTRAST   ((1<<CONTRAST_BITS)-1)   /* max quantized 
                                                    contrast */ 
#define MAX_QBRIGHTNESS ((1<<BRIGHTNESS_BITS)-1) /* max quantized 
                                                    brightness */ 
 
/* 
 * De-quantize an integer value in the range 0 .. imax to the range 
   0.0 .. max 
 * while preserving the mapping 0 -> 0.0 and imax -> max. 
 */ 



#define dequantize(value, max, imax) 
((double)(value)*(max)/(double)imax) 
 
/* 
 * Compute the square of a pixel value and return the result as 
unsigned 
   long 
 */ 
#define square(pixel) (uns_long)(pixel)*(pixel) 
 
/* 
 * Range data: range[i][j] is the brightness at row i and column j 
 */ 
image_data **range; 
 
/* 
 * Domain data, summed over 4 pixels: domain[i][j] is the sum of the 
 * pixel values at (2j, 2i), (2j+1, 2i), (2j, 2i+1) and (2j+1, 2i+1) 
 */ 
unsigned **domain; 
 
/* 
 * Cumulative range data, kept only for pixels of even coordinates. 
 * cum_range[i][j] is the sum of all pixel values strictly above and to 
   the 
 * left of pixel (2j, 2i). In particular, cum_range[y_size/2][x_size/2] 
   is 
 * the sum of all pixel values in the image. This table is also used 
for 
 * the cumulative domain data. 
 */ 
uns_long **cum_range; 
 
/* 
 * Cumulative squared range data, kept only for pixels of even 
   coordinates. 
 * cum_range2[i][j] is the sum of the squares of all pixel values 
   strictly 
 * above and to the left of pixel (2j, 2i). In particular, 
 * cum_range2[y_size/2][x_size/2] is the sum of all the squared pixel 
   values 
 * in the image. 
 */ 
float **cum_range2; 
 
/* 
 * Cumulative squared domain data. cum_domain2[i][j] is the sum of the 
   squares 
 * of all domain values strictly above and to the left of domain (j,i), 
   which 
 * corresponds to pixel (2j, 2i). The values in cum_domain2 are scaled 
   by 
 * a factor of 16.0 to avoid some multiplications. 
 */ 
float **cum_domain2; 
 
/* 



 * Domain density: domains of size s*s are located every 
   (s>>dom_density) 
 * pixels. The density factor can range from 0 to 2 (smallest domains 
 * have a size of 8 and must start on even pixels boundaries). Density 
 * factors 1 and 2 get better image quality but significantly slow 
 * down compression. 
 */ 
int dom_density = 0; 
 
/* 
 * Maximum tolerated mean square error between original image and 
 * reconstructed uncompressed image. 
 */ 
double max_error2; 
 
/* 
 * The fractal (compressed) file 
 */ 
BIT_FILE *frac_file; 
 
/* 
 * Information common to all domains of a certain size: info[s] 
   describes 
 * domains of size 1<<(s+1), corresponding to ranges of size 1<<s 
 */ 
struct domain_info { 
    int pos_bits;   /* Number of bits required to encode a domain 
                       position */ 
    int x_domains;  /* Number of domains in x (horizontal) dimension */ 
} dom_info[MAX_BITS+1]; 
 
/* 
 * Each domain is described by a `domain_data' structure. 
 * domain_head[c][s] is the head of the list of domains of class c 
 * and size 1<<(s+1) (corresponding to ranges of size 1<<s). 
 */ 
typedef struct domain_struct { 
    int x;                      /* horizontal position */ 
    int y;                      /* vertical position */ 
    float d_sum;                /* sum of all values in the domain */ 
    float d_sum2;               /* sum of all squared values in the 
                                   domain */ 
    struct domain_struct *next; /* next domain in same class */ 
} domain_data; 
 
domain_data *domain_head[NCLASSES][MAX_BITS+1]; 
 
/* 
 * Ranges are described by a `range_data' structure. This structure 
 * is computed on the fly for each range as it is compressed. 
 */ 
typedef struct range_struct { 
    int x;         /* horizontal position */ 
    int y;         /* vertical position */ 
    int s_log;     /* log base 2 of the range size */ 
    double r_sum;  /* sum of all values in the range */ 
    double r_sum2; /* sum of all squared values in the range */ 



} range_data; 
 
/* 
 * Range to domain mappings are described by an `affine_map' structure. 
 */ 
typedef struct map_struct { 
    int    contrast;   /* quantized best contrast between range and 
                          domain */ 
    int    brightness; /* quantized best brightness offset */ 
    double error2;    /* sum of squared differences between range 
                         and domain */ 
} affine_map; 
 
/* 
 * Function prototypes for both ANSI and K&R. 
 */ 
#ifdef __STDC__ 
#  define OF(args)  args 
#else 
#  define OF(args)  () 
#endif 
 
/* 
 * Functions used for compression 
 */ 
void CompressFile  OF((FILE *input, BIT_FILE *output, int argc, char 
*argv[])); 
void compress_init OF((int x_size, int y_size, FILE *image_file)); 
void compress_cleanup OF((int y_size)); 
void classify_domains OF((int x_size, int y_size, int s)); 
int  find_class       OF((int x, int y, int size)); 
void compress_range   OF((int x, int y, int s_log)); 
void find_map  OF((range_data *rangep, domain_data *dom, affine_map 
*map)); 
 
/* 
 * Functions used for decompression 
 */ 
void ExpandFile OF((BIT_FILE *input, FILE *output, int argc, char 
*argv[])); 
void decompress_range   OF((int x, int y, int s_log)); 
void refine_image       OF((void)); 
void average_boundaries OF((void)); 
 
/* 
 * Functions common to compression and decompression 
 */ 
typedef void (*process_func) OF((int x, int y, int s_log)); 
 
void traverse_image OF((int x, int y, int x_size, int y_size, 
                        process_func process)); 
int  quantize       OF((double value, double max, int imax)); 
void dominfo_init   OF((int x_size, int y_size, int density)); 
void *xalloc        OF((unsigned size)); 
void **allocate     OF((int rows, int columns, int elem_size)); 
void free_array     OF((void **array, int rows)); 
int  bitlength      OF((uns_long val)); 



 
                /**********************************/ 
                /* Functions used for compression */ 
                /**********************************/ 
 
/* 
===================================================================== 
 * This is the main compression routine.  By the time it gets called, 
 * the input and output files have been properly opened, so all it 
   has to 
 * do is the compression.  Note that the compression routine optionally 
 * accepts additional parameters: 
 * - the quality value, ranging from 0 to 20. It is used as average 
   tolerated 
 *   error between the original image and its uncompressed version. 
     (Non 
 *   integer values are also accepted.) 
 * - the domain density factor, ranging from 0 (fastest compression) 
     to 2 
 *   (best but very slow compression). 
 * - horizontal and vertical images sizes (default 320 x 200). Both 
     sizes 
 *   must be multiple of 4 in this implementation (this restriction 
     could be 
 *   removed with slightly more complex code). 
 */ 
void CompressFile(input, output, argc, argv) 
    FILE *input; 
    BIT_FILE *output; 
    int argc; 
    char *argv[]; 
{ 
    int x_size = 320;     /* horizontal image size */ 
    int y_size = 200;     /* vertical image size */ 
    double quality = 2.0; /* quality factor */ 
    int s;                /* size index for domains; their size is 
                             1<<(s+1) */ 
 
    /* Check the command line parameters: */ 
    for ( ; argc != 0; argv++, argc--) { 
        if (argv[0][0] != `-' || argc == 1) { 
            fatal_error("Incorrect argument: %s\n", *argv); 
        } 
        switch(argv[0][1]) { 
            case `q': quality     = atof(*++argv); argc--; break; 
            case `d': dom_density = atoi(*++argv); argc--; break; 
            case `h': x_size      = atoi(*++argv); argc--; break; 
            case `v': y_size      = atoi(*++argv); argc--; break; 
            default:  fatal_error("Incorrect argument: %s\n", *argv); 
        } 
    } 
    if (dom_density < 0 || dom_density > 2) { 
        fatal_error("Incorrect domain density.\n"); 
    } 
    if (x_size % 4 != 0 || y_size % 4 != 0) { 
        fatal_error ("Image sizes must be multiple of 4\n"); 
    } 



 
    /* Allocate and initialize the image data and cumulative image 
       data: */ 
    compress_init(x_size, y_size, input); 
 
    /* Initialize the domain size information as in the 
       decompressor: */ 
    dominfo_init(x_size, y_size, dom_density); 
 
    /* Classify all domains: */ 
    for (s = MIN_BITS; s <= MAX_BITS; s++) { 
        classify_domains(x_size, y_size, s); 
    } 
 
    /* Output the header of the compressed file. The first byte 
       (`F' for 
     * fractal') is just for a consistency check in the decompressor. 
     */ 
    frac_file = output; 
    OutputBits(frac_file, (uns_long)'F',    8); 
    OutputBits(frac_file, (uns_long)x_size, 16); 
    OutputBits(frac_file, (uns_long)y_size, 16); 
    OutputBits(frac_file, (uns_long)dom_density, 2); 
 
    /* Compress the whole image recursively, stopping when the image 
     * quality is good enough: 
     */ 
    max_error2 = quality*quality; 
    traverse_image(0, 0, x_size, y_size, compress_range); 
 
    /* Free all dynamically allocated memory: */ 
    compress_cleanup(y_size); 
} 
/* ================================================================= 
 * Allocate and initialize the image data and cumulative image data. 
 */ 
void compress_init(x_size, y_size, image_file) 
    int x_size;       /* horizontal image size */ 
    int y_size;       /* vertical image size */ 
    FILE *image_file; /* the input image file */ 
{ 
    int x, y;             /* horizontal and vertical indices */ 
    uns_long r_sum;       /* cumulative range and domain data */ 
    double r_sum2;        /* cumulative squared range data */ 
    double d_sum2;        /* cumulative squared domain data */ 
 
    range =   (image_data**)allocate(y_size,     x_size, 
                                     sizeof(image_data)); 
    domain    = (unsigned**)allocate(y_size/2,   x_size/2, 
                                     sizeof(unsigned)); 
    cum_range = (uns_long**)allocate(y_size/2+1, x_size/2+1, 
                                     sizeof(uns_long)); 
    cum_range2  =  (float**)allocate(y_size/2+1, x_size/2+1, 
                                     sizeof(float)); 
    cum_domain2 =  (float**)allocate(y_size/2+1, x_size/2+1, 
                                     sizeof(float)); 
    /* Read the input image: */ 



    for (y = 0; y < y_size; y++) { 
       if (fread(range[y], sizeof(image_data), x_size, image_file) 
       != x_size) { 
           fatal_error("error reading the image data\n"); 
       } 
    } 
    /* Compute the `domain' image from the `range' image. Each 
       pixel in 
     * the domain image is the sum of 4 pixels in the range image. 
       We 
     * don't average (divide by 4) to avoid losing precision. 
     */ 
     for (y=0; y < y_size/2; y++) 
     for (x=0; x < x_size/2; x++) { 
         domain[y][x] = (unsigned)range[y<<1][x<<1] + range[y<<1] 
         [(x<<1)+1] + range[(y<<1)+1][x<<1] + range[(y<<1)+1][(x<<1)+1]; 
} 
 
    /* Compute the cumulative data, which will avoid repeated 
       computations 
     * later (see the region_sum() macro below). 
     */ 
    for (x=0; x <= x_size/2; x++) { 
        cum_range[0][x] = 0; 
        cum_range2[0][x] = cum_domain2[0][x] = 0.0; 
    } 
    for (y=0; y < y_size/2; y++) { 
        d_sum2 = r_sum2 = 0.0; 
        r_sum = cum_range[y+1][0] = 0; 
        cum_range2[y+1][0] = cum_domain2[y+1][0] = 0.0; 
 
        for (x=0; x < x_size/2; x++) { 
            r_sum += domain[y][x]; 
            cum_range[y+1][x+1] = cum_range[y][x+1] + r_sum; 
 
            d_sum2 += (double)square(domain[y][x]); 
            cum_domain2[y+1][x+1] = cum_domain2[y][x+1] + d_sum2; 
            r_sum2 += (double) (square(range[y<<1][x<<1]) 
                    + square(range[y<<1][(x<<1)+1]) 
                    + square(range[(y<<1)+1][x<<1]) 
                    + square(range[(y<<1)+1][(x<<1)+1])); 
            cum_range2[y+1][x+1] = cum_range2[y][x+1] + r_sum2; 
        } 
    } 
} 
/* ================================================================ 
 * Free all dynamically allocated data structures for compression. 
 */ 
void compress_cleanup(y_size) 
    int y_size;              /* vertical image size */ 
{ 
    int s;                   /* size index for domains */ 
    int class;               /* class number */ 
    domain_data *dom, *next; /* domain pointers */ 
 
    free_array((void**)range,       y_size); 
    free_array((void**)domain,      y_size/2); 



    free_array((void**)cum_range,   y_size/2 + 1); 
    free_array((void**)cum_range2,  y_size/2 + 1); 
    free_array((void**)cum_domain2, y_size/2 + 1); 
 
    for (s = MIN_BITS; s <= MAX_BITS; s++) 
    for (class = 0; class < NCLASSES; class++) 
    for (dom = domain_head[class][s]; dom != NULL; dom = next) { 
        next = dom->next; 
        free(dom); 
    } 
} 
 
/* ================================================================== 
 * Compute the sum of pixel values or squared pixel values in a range 
 * or domain from (x,y) to (x+size-1, y+size-1) included. 
 * For a domain, the returned value is scaled by 4 or 16.0 
   respectively. 
 * x, y and size must all be even. 
 */ 
#define region_sum(cum,x,y,size) \ 
   (cum[((y)+(size))>>1][((x)+(size))>>1] - cum[(y)>>1] 
   [((x)+(size))>>1] \ 
  - cum[((y)+(size))>>1][(x)>>1]          + cum[(y)>>1][(x)>>1]) 
 
/* ================================================================= 
 * Classify all domains of a certain size. This is done only once to 
   save 
 * computations later. Each domain is inserted in a linked list 
    according 
 * to its class and size. 
 */ 
void classify_domains(x_size, y_size, s) 
    int x_size;  /* horizontal size of the complete image */ 
    int y_size;  /* vertical size   of the complete image */ 
    int s;       /* size index of the domains; their size is 
                    1<<(s+1) */ 
{ 
    domain_data *dom = NULL; /* pointer to new domain */ 
    int x, y;                /* horizontal and vertical domain 
                                position */ 
    int class;               /* domain class */ 
    int dom_size = 1<<(s+1); /* domain size */ 
    int dom_dist = dom_size >> dom_density; /* distance between 
                                      domains */ 
 
    /* Initialize all domain lists to be empty: */ 
    for (class = 0; class < NCLASSES; class++) { 
        domain_head[class][s] = NULL; 
    } 
 
    /* Classify all domains of this size: */ 
    for (y = 0; y <= y_size - dom_size; y += dom_dist) 
    for (x = 0; x <= x_size - dom_size; x += dom_dist) { 
 
       dom = (domain_data *)xalloc(sizeof(domain_data)); 
       dom->x = x; 
       dom->y = y; 



       dom->d_sum  = 0.25  *(double)region_sum(cum_range, x, y, 
       dom_size); 
       dom->d_sum2 = 0.0625*(double)region_sum(cum_domain2, x, y, 
       dom_size); 
 
       class = find_class(x, y, dom_size); 
 
       dom->next = domain_head[class][s]; 
       domain_head[class][s] = dom; 
    } 
 
    /* Check that each domain class contains at least one domain. 
     * If a class is empty, we do as if it contains the last created 
     * domain (which is actually of a different class). 
     */ 
    for (class = 0; class < NCLASSES; class++) { 
        if (domain_head[class][s] == NULL) { 
            domain_data *dom2 = (domain_data *) 
                                 xalloc(sizeof(domain_data)); 
            *dom2 = *dom; 
            dom2->next = NULL; 
            domain_head[class][s] = dom2; 
        } 
    } 
} 
 
/* ================================================================= 
 * Classify a range or domain.  The class is determined by the 
 * ordering of the image brightness in the four quadrants of the 
   range 
 * or domain. For each quadrant we compute the number of brighter 
 * quadrants; this is sufficient to uniquely determine the 
 * class. class 0 has quadrants in order of decreasing brightness; 
 * class 23 has quadrants in order of increasing brightness. 
 * 
 * IN assertion: x, y and size are all multiple of 4. 
 */ 
int find_class(x, y, size) 
    int x, y;  /* horizontal and vertical position of the range or 
                  domain */ 
    int size;  /* size of the range or domain */ 
{ 
    int class = 0;               /* the result class */ 
    int i,j;                     /* quadrant indices */ 
    uns_long sum[4];             /* sums for each quadrant */ 
    static delta[3] = {6, 2, 1}; /* table used to compute the class 
                                    number */ 
    int size1 = size >> 1; 
 
    /* Get the cumulative values of each quadrant. By the IN 
       assertion, 
     * size1, x+size1 and y+size1 are all even. 
     */ 
    sum[0] = region_sum(cum_range, x,       y,       size1); 
    sum[1] = region_sum(cum_range, x,       y+size1, size1); 
    sum[2] = region_sum(cum_range, x+size1, y+size1, size1); 
    sum[3] = region_sum(cum_range, x+size1, y,       size1); 



 
    /* Compute the class from the ordering of these values */ 
    for (i = 0;   i <= 2; i++) 
    for (j = i+1; j <= 3; j++) { 
        if (sum[i] < sum[j]) class += delta[i]; 
    } 
    return class; 
} 
 
/* ================================================================= 
 * Compress a range by searching a match with all domains of the same 
   class. 
 * Split the range if the mean square error with the best domain 
   is larger 
 * than max_error2. 
 * IN assertion: MIN_BITS <= s_log <= MAX_BITS 
 */ 
void compress_range(x, y, s_log) 
    int x, y;    /* horizontal and vertical position of the range */ 
    int s_log;   /* log base 2 of the range size */ 
{ 
    int r_size = 1<<s_log; /* size of the range */ 
    int class;             /* range class */ 
    domain_data *dom;     /* used to iterate over all domains of this 
    class */ 
    domain_data *best_dom = NULL; /* pointer to the best domain */ 
    range_data range;      /* range information for this range */ 
    affine_map map;        /* affine map for current domain  */ 
    affine_map best_map;   /* best map for this range */ 
    uns_long dom_number;   /* domain number */ 
 
    /* Compute the range class and cumulative sums: */ 
    class = find_class(x, y, r_size); 
    range.r_sum =  (double)region_sum(cum_range,  x, y, r_size); 
    range.r_sum2 = (double)region_sum(cum_range2, x, y, r_size); 
    range.x = x; 
    range.y = y; 
    range.s_log = s_log; 
 
    /* Searching all classes can improve image quality but 
       significantly 
       slows 
     * down compression. Compile with -DCOMPLETE_SEARCH if you can 
       wait... 
     */ 
#ifdef COMPLETE_SEARCH 
    for (class = 0; class < NCLASSES; class++) 
#endif 
    for (dom = domain_head[class][s_log];  dom != NULL; dom = 
    dom->next) { 
 
        /* Find the optimal map from the range to the domain: 
         */ 
        find_map(&range, dom, &map); 
 
        if (best_dom == NULL || map.error2 < best_map.error2) { 
                best_map = map; 



                best_dom = dom; 
        } 
    } 
 
    /* Output the best affine map if the mean square error with the 
     * best domain is smaller than max_error2, or if it not possible 
     * to split the range because it is too small: 
     */ 
    if (s_log == MIN_BITS || 
        best_map.error2 <= max_error2*((long)r_size*r_size)) { 
 
        /* If the range is too small to be split, the decompressor 
           knows 
         * this, otherwise we must indicate that the range has not 
           been 
           split: 
         */ 
        if (s_log != MIN_BITS) { 
            OutputBit(frac_file, 1);  /* affine map follows */ 
        } 
        OutputBits(frac_file, (uns_long)best_map.contrast, 
        CONTRAST_BITS); 
        OutputBits(frac_file, (uns_long)best_map.brightness, 
        BRIGHTNESS_BITS); 
 
        /* When the contrast is null, the decompressor does not 
           need to 
           know 
         * which domain was selected: 
         */ 
        if (best_map.contrast == 0) return; 
        dom_number = (uns_long)best_dom->y * dom_info[s_log] 
        .x_domains 
                      + (uns_long)best_dom->x; 
 
        /* The distance between two domains is the domain size 
           1<<(s_log+1) 
         * shifted right by the domain_density, so it is a power of two. 
         * The domain x and y positions have (s_log + 1 - dom_density) 
           zero 
         * bits each, which we don't have to transmit. 
         */ 
        OutputBits(frac_file, dom_number >> (s_log + 1 - dom_density), 
                   dom_info[s_log].pos_bits); 
    } else { 
        /* Tell the decompressor that no affine map follows because 
         * this range has been split: 
         */ 
        OutputBit(frac_file, 0); 
 
        /* Split the range into 4 squares and process them 
           recursively: */ 
        compress_range(x,          y,          s_log-1); 
        compress_range(x+r_size/2, y,          s_log-1); 
        compress_range(x,          y+r_size/2, s_log-1); 
        compress_range(x+r_size/2, y+r_size/2, s_log-1); 
    } 



} 
 
/* ================================================================== 
 * Find the best affine mapping from a range to a domain. This is 
   done 
 * by minimizing the sum of squared errors as a function of the 
   contrast 
 * and brightness:  sum on all range pixels ri and domain pixels 
   di of 
 *      square(contrast*domain[di] + brightness - range[ri]) 
 * and solving the resulting equations to get contrast and 
   brightness. 
 */ 
void find_map(rangep, dom, map) 
    range_data  *rangep; /* range information (input parameter) */ 
    domain_data *dom;    /* domain information (input parameter) */ 
    affine_map  *map;    /* resulting map (output parameter) */ 
{ 
    int ry;            /* vertical position inside the range */ 
    int dy = dom->y >> 1; /* vertical position inside the 
                                      domain */ 
    uns_long rd = 0;   /* sum of range*domain values (scaled 
                          by 4) */ 
    double rd_sum;     /* sum of range*domain values 
                         (normalized) */ 
    double contrast;   /* optimal contrast between range and 
                          domain */ 
    double brightness; /* optimal brightness offset between range 
                          and domain */ 
    double qbrightness;/* brightness after quantization */ 
    double max_scaled; /* maximum scaled value = 
                          contrast*MAX_GREY */ 
    int r_size = 1 << rangep->s_log;                 /* the range 
                                               size */ 
    double pixels = (double)((long)r_size*r_size); /* total number of 
    pixels */ 
 
    for (ry = rangep->y; ry < rangep->y + r_size; ry++, dy++) { 
 
        register image_data *r = &range[ry][rangep->x]; 
        register unsigned   *d = &domain[dy][dom->x >> 1]; 
        int i = r_size >> 2; 
 
        /* The following loop is the most time consuming part of the 
           whole 
         * program, so it is unrolled a little. We rely on r_size 
           being a 
         * multiple of 4 (ranges smaller than 4 don't make sense 
           because 
         * of the very bad compression). rd cannot overflow with 
           unsigned 
         * 32-bit arithmetic since MAX_BITS <= 7 implies r_size 
           <= 128. 
         */ 
        do { 
            rd += (uns_long)(*r++)*(*d++); 
            rd += (uns_long)(*r++)*(*d++); 



            rd += (uns_long)(*r++)*(*d++); 
            rd += (uns_long)(*r++)*(*d++); 
        } while (--i != 0); 
    } 
    rd_sum = 0.25*rd; 
 
    /* Compute and quantize the contrast: */ 
    contrast = pixels * dom->d_sum2 - dom->d_sum * dom->d_sum; 
    if (contrast != 0.0) { 
        contrast = (pixels*rd_sum - rangep->r_sum*dom->d_sum)/contrast; 
    } 
    map->contrast = quantize(contrast, MAX_CONTRAST, MAX_QCONTRAST); 
 
    /* Recompute the contrast as in the decompressor: */ 
    contrast = dequantize(map->contrast, MAX_CONTRAST, MAX_QCONTRAST); 
    /* Compute and quantize the brightness. We actually quantize the 
       value 
     * (brightness + 255*contrast) to get a positive value: 
     *    -contrast*255 <= brightness <= 255 
     * so 0 <= brightness + 255*contrast <= 255 + contrast*255 
     */ 
    brightness = (rangep->r_sum - contrast*dom->d_sum)/pixels; 
    max_scaled = contrast*MAX_GREY; 
    map->brightness = quantize(brightness + max_scaled, 
                         max_scaled + MAX_GREY, MAX_QBRIGHTNESS); 
 
    /* Recompute the quantized brightness as in the decompressor: */ 
    qbrightness = dequantize(map->brightness, max_scaled + MAX_GREY, 
                             MAX_QBRIGHTNESS) - max_scaled; 
 
    /* Compute the sum of squared errors, which is the quantity we 
       are 
     * trying to minimize: 
     */ 
    map->error2 = contrast*(contrast*dom->d_sum2 - 
    2.0*rd_sum) +  
    rangep->r_sum2 + qbrightness*pixels*(qbrightness - 2.0*brightness); 
} 
 
                /************************************/ 
                /* Functions used for decompression */ 
                /************************************/ 
 
/* 
 * Scale factor for decompression (decompressed size divided by 
   original size). 
 * Only integer values are supported to simplify the implementation. 
 */ 
int image_scale = 1; 
 
/* 
 * An affine map is described by a contrast, a brightness offset, a 
range 
 * and a domain. The contrast and brightness are kept as integer values 
 * to speed up the decompression on machines with slow floating point. 
 */ 
typedef struct map_info_struct { 



    int contrast;   /* contrast scaled by 16384 (to maintain 
                       precision) */ 
    int brightness; /* brightness offset scaled by 128 */ 
    int x;          /* horizontal position of the range */ 
    int y;          /* vertical position of the range */ 
    int size;       /* range size */ 
    int dom_x;      /* horizontal position of the domain */ 
    int dom_y;      /* vertical position of the domain */ 
    struct map_info_struct *next; /* next map */ 
} map_info; 
 
map_info *map_head = NULL; /* head of the linked list of all affine 
                              maps */ 
 
/* ================================================================== 
 * This is the main decompression routine.  By the time it gets called, 
 * the input and output files have been properly opened, so all it has 
to 
 * do is the decompression.  Note that the decompression routine 
optionally 
 * accepts additional parameters: 
 * - the number of iterations, ranging from 1 to 15. The image quality 
 *   does not improve much after 8 to 10 iterations. The default is 8. 
 * - the scale factor (decompressed size divided by original size) 
 */ 
void ExpandFile(input, output, argc, argv) 
    BIT_FILE *input; 
    FILE *output; 
    int argc; 
    char *argv[]; 
{ 
    int x_size;         /* horizontal image size */ 
    int y_size;         /* vertical image size */ 
    int x_dsize;        /* horizontal size of decompressed image */ 
    int y_dsize;        /* vertical size of decompressed image */ 
    int iterations = 8; /* number of iterations */ 
    int y;              /* current row being written to disk */ 
 
    /* Check the command line parameters: */ 
    for ( ; argc != 0; argv++, argc--) { 
        if (argv[0][0] != `-' || argc == 1) { 
            fatal_error("Incorrect argument: %s\n", *argv); 
        } 
        switch(argv[0][1]) { 
            case `i': iterations  = atoi(*++argv); argc--; break; 
            case `s': image_scale = atoi(*++argv); argc--; break; 
            default:  fatal_error("Incorrect argument: %s\n", *argv); 
        } 
    } 
    if (image_scale < 1) { 
        fatal_error("Incorrect image scale\n"); 
    } 
    /* Read the header of the fractal file: */ 
    frac_file = input; 
    if (InputBits(frac_file, 8) != `F') { 
        fatal_error("Bad fractal file format\n"); 
    } 



    x_size = (int)InputBits(frac_file, 16); 
    y_size = (int)InputBits(frac_file, 16); 
    dom_density = (int)InputBits(frac_file, 2); 
 
    /* Allocate the scaled image: */ 
    x_dsize = x_size * image_scale; 
    y_dsize = y_size * image_scale; 
    range = (image_data**)allocate(y_dsize, x_dsize, sizeof 
    (image_data)); 
 
    /* Initialize the domain information as in the compressor: */ 
    dominfo_init(x_size, y_size, dom_density); 
 
    /* Read all the affine maps, by using the same recursive 
       traversal 
     * of the image as the compressor: 
     */ 
    traverse_image(0, 0, x_size, y_size, decompress_range); 
 
    /* Iterate all affine maps over an initially random image. 
       Since the 
     * affine maps are contractive, this process converges. 
     */ 
    while (iterations-- > 0) refine_image(); 
 
    /* Smooth the transition between adjacent ranges: */ 
    average_boundaries(); 
 
    /* Write the uncompressed file: */ 
    for (y = 0; y < y_dsize; y++) { 
        if (fwrite(range[y], sizeof(image_data), x_dsize, output) 
        != x_dsize) { 
            fatal_error("Error writing uncompressed image\n"); 
        } 
    } 
    /* Cleanup: */ 
    free_array((void**)range, y_dsize); 
} 
 
/* ================================================================= 
 * Read the affine map for a range, or split the range if the 
   compressor 
 * did so in the function compress_range(). 
 */ 
void decompress_range(x, y, s_log) 
    int x, y;    /* horizontal and vertical position of the range */ 
    int s_log;   /* log base 2 of the range size */ 
{ 
    int r_size = 1<<s_log; /* range size */ 
    map_info *map;         /* pointer to affine map information */ 
    double contrast;       /* contrast between range and domain */ 
    double brightness;     /* brightness offset between range and 
                              domain */ 
    double max_scaled;     /* maximum scaled value = 
                              contrast*MAX_GREY */ 
    uns_long dom_number;   /* domain number */ 
 



    /* Read an affine map if the compressor has written one at this 
       point: */ 
    if (s_log == MIN_BITS || InputBit(frac_file)) { 
 
        map = (map_info *)xalloc(sizeof(map_info)); 
        map->next = map_head; 
        map_head = map; 
        map->x = x; 
        map->y = y; 
        map->size = r_size; 
        map->contrast   = (int)InputBits(frac_file, CONTRAST_BITS); 
        map->brightness = (int)InputBits(frac_file, BRIGHTNESS_BITS); 
 
        contrast = dequantize(map->contrast, MAX_CONTRAST, 
        MAX_QCONTRAST); 
        max_scaled = contrast*MAX_GREY; 
        brightness = dequantize(map->brightness, max_scaled + 
        MAX_GREY, 
                                MAX_QBRIGHTNESS) - max_scaled; 
 
        /* Scale the brightness by 128 to maintain precision later, 
           while 
         * avoiding overflow with 16-bit arithmetic: 
         *     -255 <= -contrast*255 <= brightness <= 255 
         * so -32767 < brightness*128 < 32767 
         */ 
        map->brightness = (int)(brightness*128.0); 
 
        /* When the contrast is null, the compressor did not encode 
           the 
         * domain number: 
         */ 
        if (map->contrast != 0) { 
 
            /* Scale the contrast by 16384 to maintain precision 
               later. 
             *   0.0 <= contrast <= 1.0 so 0 <= contrast*16384 
                 <= 16384 
             */ 
            map->contrast = (int)(contrast*16384.0); 
 
            /* Read the domain number, and add the zero bits that 
               the 
             * compressor did not transmit: 
             */ 
            dom_number = InputBits(frac_file, dom_info[s_log] 
            .pos_bits); 
            map->dom_x = (int)(dom_number % dom_info[s_log] 
            .x_domains) 
                          << (s_log + 1 - dom_density); 
            map->dom_y = (int)(dom_number / dom_info[s_log] 
            .x_domains) 
                          << (s_log + 1 - dom_density); 
        } else { 
            /* For a null contrast, use an arbitrary domain: */ 
            map->dom_x = map->dom_y = 0; 
        } 



 
        /* Scale the range and domain if necessary. This 
           implementation 
         * uses only an integer scale to make sure that the union 
           of all 
         * ranges is exactly the scaled image, that ranges never 
           overlap, 
         * and that all range sizes are even. 
         */ 
        if (image_scale != 1) { 
            map->x *= image_scale; 
            map->y *= image_scale; 
            map->size *= image_scale; 
            map->dom_x *= image_scale; 
            map->dom_y *= image_scale; 
        } 
    } else { 
        /* Split the range into 4 squares and process them 
           recursively 
         * as in the compressor: 
         */ 
        decompress_range(x,          y,          s_log-1); 
        decompress_range(x+r_size/2, y,          s_log-1); 
        decompress_range(x,          y+r_size/2, s_log-1); 
        decompress_range(x+r_size/2, y+r_size/2, s_log-1); 
    } 
} 
 
/* =================================================================== 
 * Refine the image by applying one round of all affine maps on 
   the 
 * image. The "pure" method would compute a separate new image and 
   then 
 * copy it to the original image. However the convergence towards 
   the 
 * final image happens to be quicker if we overwrite the same image 
 * while applying the affine maps; for the same quality of 
   reconstructed 
 * image we need fewer iterations. Overwriting the same image also 
 * reduces the memory requirements. 
 */ 
void refine_image() 
{ 
    map_info *map;   /* pointer to current affine map */ 
    long brightness; /* brightness offset of the map, scaled by 
                        65536 */ 
    long val;        /* new pixel value */ 
    int y;           /* vertical position in range */ 
    int dom_y;       /* vertical position in domain */ 
    int j; 
 
    for (map = map_head; map != NULL; map = map->next) { 
 
        /* map->brightness is scaled by 128, so scale it again 
           by 512 to 
         * get a total scale factor of 65536: 
         */ 



        brightness = (long)map->brightness << 9; 
 
        dom_y = map->dom_y; 
        for (y = map->y; y < map->y + map->size; y++) { 
 
            /* The following loop is the most time consuming, so 
               we move 
             * some address calculations outside the loop: 
             */ 
            image_data *r  = &range[y][map->x]; 
            image_data *d  = &range[dom_y++][map->dom_x]; 
            image_data *d1 = &range[dom_y++][map->dom_x]; 
            j = map->size; 
            do { 
                val  = *d++ + *d1++; 
                val += *d++ + *d1++; 
                /* val is now scaled by 4 and map->contrast is 
                   scaled by 
                   16384, 
                 * so val * map->contrast will be scaled by 
                   65536. 
                 */ 
                val = val * map->contrast + brightness; 
                if (val < 0) val = 0; 
                val >>= 16; /* get rid of the 65536 scaling */ 
                if (val >= MAX_GREY) val = MAX_GREY; 
 
                *r++ = (image_data)val; 
            } while (--j != 0); 
        } 
    } 
} 
 
/* ================================================================= 
 * Go through all ranges to smooth the transition between adjacent 
 * ranges, except those of minimal size. 
 */ 
void average_boundaries() 
{ 
    map_info *map;   /* pointer to current affine map */ 
    unsigned val;    /* sum of pixel value for current and adjacent 
                        ranges */ 
    int x;           /* horizontal position in current range */ 
    int y;           /* vertical position in current range */ 
 
    for (map = map_head; map != NULL; map = map->next) { 
 
        if (map->size == (1<<MIN_BITS)) continue; /* range 
                                                    too small */ 
        if (map->x > 1) { 
            /* Smooth the left boundary of the range and the 
               right boundary 
             * of the adjacent range(s) to the left: 
             */ 
            for (y = map->y; y < map->y + map->size; y++) { 
                 val  = range[y][map->x - 1] + range[y][map->x]; 
                 range[y][map->x - 1] = 



                     (image_data)((range[y][map->x - 2] + val)/3); 
                 range[y][map->x] = 
                     (image_data)((val + range[y][map->x + 1])/3); 
            } 
        } 
        if (map->y > 1)  { 
            /* Smooth the top boundary of the range and the bottom 
               boundary 
             * of the range(s) above: 
             */ 
            for (x = map->x; x < map->x + map->size; x++) { 
                 val  = range[map->y - 1][x] + range[map->y][x]; 
                 range[map->y - 1][x] = 
                     (image_data)((range[map->y - 2][x] + val)/3); 
                 range[map->y][x] = 
                     (image_data)((val + range[map->y + 1][x])/3); 
            } 
        } 
    } 
} 
 
        /*****************************************************/ 
        /* Functions common to compression and decompression */ 
        /*****************************************************/ 
 
/* =================================================================== 
 * Split a rectangle sub-image into a square and potentially two 
   rectangles, 
 * then split the square and rectangles recursively if necessary. 
   To simplify 
 * the algorithm, the size of the square is chosen as a power of 
   two. 
 * If the square if small enough as a range, call the appropriate 
   compression 
 * or decompression function for this range. 
 * IN assertions: x, y, x_size and y_size are multiple of 4. 
 */ 
void traverse_image(x, y, x_size, y_size, process) 
    int x, y;             /* sub-image horizontal and vertical 
                             position */ 
    int x_size, y_size;   /* sub-image horizontal and vertical 
                             sizes */ 
    process_func process; /* the compression or decompression 
                             function */ 
{ 
    int s_size;  /* size of the square; s_size = 1<<s_log */ 
    int s_log;   /* log base 2 of this size */ 
 
    s_log = bitlength(x_size < y_size ? (uns_long)x_size : 
    (uns_long)y_size)-1; 
    s_size = 1 << s_log; 
    /* Since x_size and y_size are >= 4, s_log >= MIN_BITS */ 
 
    /* Split the square recursively if it is too large for a 
       range: */ 
    if (s_log > MAX_BITS) { 
        traverse_image(x,          y,          s_size/2, s_size/2, 



        process); 
        traverse_image(x+s_size/2, y,          s_size/2, s_size/2, 
        process); 
        traverse_image(x,          y+s_size/2, s_size/2, s_size/2, 
        process); 
        traverse_image(x+s_size/2, y+s_size/2, s_size/2, s_size/2, 
        process); 
    } else { 
        /* Compress or decompress the square as a range: */ 
        (*process)(x, y, s_log); 
    } 
 
    /* Traverse the rectangle on the right of the square: */ 
    if (x_size > s_size) { 
        traverse_image(x + s_size, y, x_size - s_size, y_size, 
         process); 
 
        /* Since x_size and s_size are multiple of 4, x + s_size and 
         * x_size - s_size are also multiple of 4. 
         */ 
    } 
    /* Traverse the rectangle below the square: */ 
    if (y_size > s_size) { 
        traverse_image(x, y + s_size, s_size, y_size - s_size, 
        process); 
    } 
} 
 
/* ================================================================= 
 * Initialize the domain information dom_info. This must be done 
   in the 
 * same manner in the compressor and the decompressor. 
 */ 
void dominfo_init(x_size, y_size, density) 
    int x_size;       /* horizontal size of original image */ 
    int y_size;       /* vertical size of original image */ 
    int density;      /* domain density (0 to 2) */ 
{ 
    int s;            /* size index for domains; their size is 
                         1<<(s+1) */ 
 
    for (s = MIN_BITS; s <= MAX_BITS; s++) { 
        int y_domains;            /* number of domains vertically */ 
        int dom_size = 1<<(s+1);  /* domain size */ 
 
        /* The distance between two domains is the domain size 
           1<<(s+1) 
         * shifted right by the domain density, so it is a power 
           of two. 
         */ 
        dom_info[s].x_domains = ((x_size - dom_size)>>(s + 1 - 
        density)) + 1; 
        y_domains             = ((y_size - dom_size)>>(s + 1 - 
       density)) + 1; 
 
        /* Number of bits required to encode a domain position: */ 
        dom_info[s].pos_bits =  bitlength 



            ((uns_long)dom_info[s].x_domains * y_domains - 1); 
    } 
} 
 
/* ============================================================== 
 * Quantize a value in the range 0.0 .. max to the range 0..imax 
 * ensuring that 0.0 is encoded as 0 and max as imax. 
 */ 
int quantize(value, max, imax) 
    double value, max; 
    int imax; 
{ 
    int ival = (int) floor((value/max)*(double)(imax+1)); 
 
    if (ival < 0) return 0; 
    if (ival > imax) return imax; 
    return ival; 
} 
 
/* ============================================================== 
 * Allocate memory and check that the allocation was successful. 
 */ 
void *xalloc(size) 
    unsigned size; 
{ 
    void *p = malloc(size); 
 
    if (p == NULL) { 
        fatal_error("insufficient memory\n"); 
    } 
    return p; 
} 
 
/* ============================================================== 
 * Allocate a two dimensional array. For portability to 16-bit 
 * architectures with segments limited to 64K, we allocate one 
 * array per row, so the two dimensional array is allocated 
 * as an array of arrays. 
 */ 
void **allocate(rows, columns, elem_size) 
    int rows;      /* number of rows */ 
    int columns;   /* number of columns */ 
    int elem_size; /* element size */ 
{ 
    int row; 
    void **array = (void**)xalloc(rows * sizeof(void *)); 
 
    for (row = 0; row < rows; row++) { 
        array[row] = (void*)xalloc(columns * elem_size); 
    } 
    return array; 
} 
 
/* ========================================================== 
 * Free a two dimensional array allocated as a set of rows. 
 */ 
void free_array(array, rows) 



    void **array;  /* the two-dimensional array */ 
    int rows;      /* number of rows */ 
{ 
    int row; 
    for (row = 0; row < rows; row++) { 
        free(array[row]); 
    } 
} 
 
/* ============================================================= 
 * Return the number of bits needed to represent an integer: 
 * 0 to 1 -> 1, 
 * 2 to 3 -> 2, 
 * 3 to 7 -> 3, etc... 
 * This function could be made faster with a lookup table. 
 */ 
int  bitlength(val) 
    uns_long val; 
{ 
 
    int bits = 1; 
 
    if (val > 0xffff) bits += 16, val >>= 16; 
    if (val > 0xff)   bits += 8,  val >>= 8; 
    if (val > 0xf)    bits += 4,  val >>= 4; 
    if (val > 0x3)    bits += 2,  val >>= 2; 
    if (val > 0x1)    bits += 1; 
    return bits; 
} 

Some Compression Results 

Some results of the fractal program are shown below in Figure 13.6. We have used the 
same five grey scale images as in Chapter 11. All images have been compressed with a 
domain density value of 2.  

File  Quality  
Starting 
Size  

Compressed 
Size  Ratio  RMS Error 

CHEETAH.GS  1  64000  12157  82%  9.9  
CHEETAH.GS  2  64000  12157  82%  9.9  
CHEETAH.GS  3  64000  12140  82%  9.9  
CHEETAH.GS  4  64000  12094  82%  9.9  
CHEETAH.GS  5  64000  11993  82%  9.9  
CHEETAH.GS  10  64000  10017  85%  10.4  
CHEETAH.GS  15  64000  6613  90%  12.4  
CHEETAH.GS  20  64000  3888  94%  15.1  
CLOWN.GS  1  64000  11961  82%  7.9  
CLOWN.GS  2  64000  11206  83%  8.0  



CLOWN.GS  3  64000  10137  85%  8.0  
CLOWN.GS  4  64000  9571  86%  8.0  
CLOWN.GS  5  64000  9203  86%  8.1  
CLOWN.GS  10  64000  6144  91%  9.2  
CLOWN.GS  15  64000  3937  94%  10.9  
CLOWN.GS  20  64000  2643  96%  12.7  
LISAW.GS  1  64000  12136  82%  2.7  
LISAW.GS  2  64000  11246  83%  2.7  
LISAW.GS  3  64000  7945  88%  3.0  
LISAW.GS  4  64000  5208  92%  3.4  
LISAW.GS  5  64000  3704  95%  3.8  
LISAW.GS  10  64000  1296  98%  5.7  
LISAW.GS  15  64000  951  99%  6.9  
LISAW.GS  20  64000  796  99%  7.4  
ROSE.GS  1  64000  8707  87%  8.0  
ROSE.GS  2  64000  8703  87%  8.0  
ROSE.GS  3  64000  8597  87%  8.0  
ROSE.GS  4  64000  8349  87%  8.1  
ROSE.GS  5  64000  7885  88%  8.1  
ROSE.GS  10  64000  5065  93%  9.0  
ROSE.GS  15  64000  3369  95%  10.3  
ROSE.GS  20  64000  2280  97%  12.5  
MOUSE.GS  1  64000  9580  86%  2.8  
MOUSE.GS  2  64000  7546  89%  2.8  
MOUSE.GS  3  64000  5323  92%  2.9  
MOUSE.GS  4  64000  4411  94%  3.1  
MOUSE.GS  5  64000  3571  95%  3.3  
MOUSE.GS  10  64000  1379  98%  5.1  
MOUSE.GS  15  64000  989  99%  6.3  
MOUSE.GS  20  64000  798  99%  7.1  

Figure 13.6 Compression Results 

Figure 13.6 can be compared with Figure 11.13 giving the results of DCT compression 
with some caution: the RMS error value is not an accurate measure of image quality, and 
the two programs are simple implementations which can both be improved. Yet from the 
comparison it is apparent that DCT compression performs better than fractal compression 
at low compression ratios, and that fractal compression is much better at high 
compression ratios. This is confirmed by visual inspection of the images. 



The fractal compression program can achieve compression ratios that the DCT program 
cannot reach without extreme degradation of the image. For example, the LISAW image 
can be compressed to 1752 bytes (97% compression ratio) with fractal compression and 
still retain a natural aspect. Of course some degradation of the image is unavoidable at 
such a compression ratio, but the image quality is still acceptable at least for some 
applications where high-fidelity is not an absolute requirement. With the DCT 
compression program, LISAW compressed to 4170 bytes (more than twice as large as the 
fractal version) has an extremely “blocky” aspect which is immediately apparent. 

Even a production-quality JPEG compressor cannot reach the quality of our simple 
fractal compression program at such high compression ratios. This is clearly visible in 
Figure 13.7, where both compressed files have approximately the same size (1752 bytes 
for the fractal version, 1741 bytes for the JPEG version). The fractal version was 
produced with quality factor 8 and domain density 2; the JPEG quality factor was chosen 
to get an equivalent size for the compressed file. 

 
Fractal compression, 1752 bytes 

 
Figure 13-7  JPEG compression, 1741 bytes 

In general, there is little improvement in the image quality between quality factors 2 and 
1. This is due to the simple nature of our algorithm, which reaches its limits at high 
quality factors and low compression ratios. However even with a more complex 
algorithm, a fractal-based method may not be able to beat DCT-based methods at low 
compression ratios. Fractal compression really shines for high compression ratios, or 
when zooming on a portion of an image or enlarging a complete image.  

The compression ratios obtained with our simple fractal compression program could be 
further improved by taking into account possible symmetries and rotations between 
ranges and domains, by using non-square ranges and domains, by using more bits to 
encode contrast and brightness in. the affine transformations, and by using Huffman or 
arithmetic encoding on the parameters of affine transformations. 

The fractal compression program is slower than the DCT program, but the decompression 
is faster even in this simple implementation. The decompression speed could be further 
improved significantly by taking advantage of the resolution-independence of fractal 
compression: the image could be decoded at a lower resolution in the first iterations, and 
decoded at the full image size only for the last two iterations. While working at a lower 
resolution, the decoder need only work with a fraction of all the pixels of the original 
image, thus the total number of instructions required for decoding is much reduced. 



Patents 

The field of data compression is mined with patents, and fractal image compression is no 
exception. Most patents are owned by Iterated Systems, Inc. US patent 4,941,193 covers 
the “graduate student algorithm” for fractal compression with IFS, which is not practical 
as we have seen.  

US patent 5,065,447 (continued in 5,347,600) covers fractal compression with the 
“Fractal Transform”, that is, with Partitioned Iterated Function Systems. The sample 
program given in the chapter is provided only for educational purposes, as it may be 
affected by these patents. If you wish to use it for other purposes, you must contact 
Iterated Systems at the following address in the USA: 

5550A Peachtree Parkway, Suite 650 
Norcross, GA 30092 

Iterated Systems also owns US patent 5,384,867 (continued in 5,430,812) on hardware 
boards performing fractal compression. 

US patent 5,416,856, filed by Jacobs, Boss, and Fisher, covers a refinement of fractal 
compression with PIFS, where at least one of the domain to range transformations is non-
contractive. The inventors observed that it is not necessary to impose contractivity on any 
given transformation, as long as the PIFS consisting of the union of all transformations is 
eventually contractive after some iterations. The contractive transformations may 
dominate the expansive ones after two or more iterations. Our sample program does not 
use this refinement. 
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Other Resources 

An excellent resource for programmers wanting to learn more about Data Compression is 
the PC Programming Forum on Compuserve. To open a Compuserve account, call their 
customer service department at 1-800-848-8990. Some files of interest presently on in the 
Data Compression Library of that forum include:  



AR002.EXE  A straightforward compression/archive program, with commented 
C source.  

ARJ241.EXE 
UNAR24.EXE  

The ARJ compression program. ARJ is free for non-commercial 
use, and includes UNARJ.C, which can be freely distributed and 
incorporated in other products.  

CMPPAS.EXE  LZSS and LZARI compression programs in Turbo Pascal.  
COMPR.TXT  A paper by Haruhiko Okumura discussing the state of the art in 

Japanese shareware compression programs, notably LHarc.  
LHA213.EXE 
LHASRC.EXE  

The LHarc compression program, freeware, with C and assembly 
source.  

LZCOMP.EXE  C source for LZSS, LZHUF, and LZSS algorithms.  
PAK251.EXE  Shareware compresson program, supports multiple formats.  
PKZ204G.EXE  The well known PKZIP shareware archive/compression package.  
ZOO210.EXE  The UNIX archiving package. Public Domain.  
 
 
 
 

Appendix A 
Statistics for Compression Programs  
This appendix gives statistics for some of the compression programs found in this book. 
The data sets used to test the compression where identical to the ones I used when 
judging the 1991 Dr. Dobb’s Journal Data Compression Contest. The results of that 
contest can be found in the November 1991 issue of Dr. Dobb’s Journal.  

The compression and expansion speeds given here should be taken with a grain of salt. 
First of all, no attempt was made to optimize these programs. Secondly, some variation 
will be seen depending on what compiler was used to build the executable. Most of the 
executables were built using Borland C++, but in a few cases, expanded memory 
requirements let me to use Zortech C++ with either the 286 or 386 DOS Extender. 

  Compression Ratios  
 Graphics  Executables  Text Files  Overall  

HUFF.C Chapter 3      

Huffman Coding  27.22  24.79  40.38  31.04  
AHUFF.C Chapter4      

Adaptive Huffman  32.59  26.69  40.72  33.27  
ARITH.C Chapter 5      



Arithmetic Coding  27.78  25.25  40.81  31.51  
ARITHN.C Chapter 6      

Order = 1  61.66  44.74  59.60  54.49  
ARITHN.C Chapter 6 (1)      

Order = 2  59.85  50.47  68.43  59.37  
ARITHN.C Chapter 6 (1)      

Order = 3  58.51  51.55  71.86  60.67  
LZSS.C Chapter 8      

Index/Length = 12/4  43.45  41.44  58.83  48.22  
LZSS.C Chapter 8      

Index/Length = 13/4  44.57  42.56  60.91  49.69  
LZSS.C Chapter 8 (3)      

Index/Length = 14/4  44.71  42.32  61.10  49.70  
LZSS.C Chapter 8      

Index/Length = 12/3  42.83  40.38  57.27  47.10  
LZSS.C Chapter 8      

Index/Length = 12/5  43.91  42.31  59.21  48.81  
LZSS.C Chapter 8      

Index/Length = 12/8  40.60  39.60  54.67  45.29  
LZW15V.C Chapter 9      

15 bit variable LZW  48.44  36.15  58.28  47.31  
LZW15V.C Chapter 9      

14 bit variable LZW  48.23  36.27  57.76  47.11  
LZW15V.C Chapter 9      

13 bit variable LZW  47.76  36.34  56.71  46.65  
LZW15V.C Chapter 9      

12 bit variable LZW  46.78  36.61  54.82  45.81  
LZW12.C Chapter 9      

12 bit fixed LZW  20.61  15.07  50.32  29.20  
HUFF.C Chapter 3      

Huffman Coding  15273  13306  13353  13835  
AHUFF.C Chapter 4      

Adaptive Huffman  7553  6200  7523  7028  
ARITH.C Chapter 5      

Arithmetic Coding  4616  4667  4474  4584  
ARITHN.C Chapter 6      

Order = 1  804  395  953  702  
ARITHN.C Chapter 6 (1)      



Order = 2  929  462  1158  834  
ARITHN.C Chapter 6 (1)      

Order = 3  975  483  1206  871  
LZSS.C Chapter 8      

Index/Length = 12/4  3657  4159  3165  3671  
LZSS.C Chapter 8      

Index/Length = 13/4  3268  3853  2839  3336  
LZSS.C Chapter 8 (3)      

Index/Length = 14/4  3082  3832  2563  3180  
LZSS.C Chapter 8      

Index/Length = 12/3  4093  4392  3594  4027  
LZSS.C Chapter 8      

Index/Length = 12/5  2942  3764  2773  3194  
LZSS.C Chapter 8      

Index/Length = 12/8  1831  1460  2411  1899  
LZW15V.C Chapter 9      

15 bit variable LZW  14913  11744  13332  13140  
LZW15V.C Chapter 9      

14 bit variable LZW  14850  11332  12783  12769  
LZW15V.C Chapter 9      

13 bit variable LZW  14256  10904  12241  12257  
LZW15V.C Chapter 9      

12 bit variable LZW  13669  10320  11432  11591  
LZW12.C Chapter 9      

12 bit fixed LZW  13106  11057  14379  12786  

  Expansion Rates  
 Graphics  Executables  Text Files  Overall 

HUFF.C Chapter 3      

Huffman Coding  12428  10892  12560  11891  
AHUFF.C Chapter 4      

Adaptive Huffman  7366  6141  7755  7041  
ARITH.C Chapter 5      

Arithmetic Coding  2320  2205  2074  2188  
ARITHN.C Chapter 6      

Order = 1  793  405  944  700  
ARITHN.C Chapter 6 (1)      



Order = 2  905  472  1136  824  
ARITHN.C Chapter 6 (1)      

Order = 3  946  492  1173  855  
LZSS.C Chapter 8      

Index/Length = 12/4  18622  16526  17424  17394  
LZSS.C Chapter 8      

Index/Length = 13/4  18899  16716  17798  17673  
LZSS.C Chapter 8 (3)      

Index/Length = 14/4  30334  25120  27120  27196  
LZSS.C Chapter 8      

Index/Length = 12/3  18248  16572  16756  17074  
LZSS.C Chapter 8      

Index/Length = 12/5  18680  16674  17266  17409  
LZSS.C Chapter 8      

Index/Length = 12/8  18113  16230  16673  16879  
LZW15V.C Chapter 9      

15 bit variable LZW  15167  11986  13077  13206  
LZW15V.C Chapter 9      

14 bit variable LZW  14942  11804  12911  13018  
LZW15V.C Chapter 9      

13 bit variable LZW  14445  11462  12495  12609  
LZW15V.C Chapter 9      

12 bit variable LZW  13567  10893  11608  11845  
LZW12.C Chapter 9      

12 bit fixed LZW  15326  13978  15705  14950  

 
Notes:   
(1) Built with Zortech’s 286 DOS Extender, so as to access all available extended memory. Higher order 
models can use megabytes of memory.  

(2) Built with Zortech’s 386 DOS Extender. One of the arrays in the program was larger than 64K, and this 
was an easy way to rebuild the code without using MS-DOS based “huge” pointers.  

 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix B 
Test Programs  
One of the problems I noticed when testing data compression programs for the Dr. 
Dobb’s programming contest of 1991 was that of inadequate testing. Many of the 
programs I was given failed on several of the test files in our compression database.  

After good design, the best weapon to use against these kind of errors is exhaustive 
testing. I have a test program I use under MS-DOS, named CHURN, which can apply a 
compression program to every file on a disk volume, performing both compression, 
decompression, then compare the input to the output. This has proven very helpful to me 
when testing the software in this book. 

The MS-DOS version of the program is given below. Instructions on how to use this 
program are found in the program listing. 

/**************************START OF CHURN.C**************************** 
* 
*  This is a utility program used to test compression/decompression 
*  programs for accuracy, speed, and compression ratios.  CHURN is 
*  called with three arguments.  The first is a root directory.  CHURN 
*  will attempt to compress  and then decompress every file in and 
under 
*  the specified root directory.  The next parameter on the command 



*  line is the compression command.  CHURN needs to compress the input 
*  file to a file called TEST.CMP.  The compression command tells CHURN 
*  how to do this.  CHURN will execute the compression command by 
*  passing the command line to DOS using the system() function call. 
*  It attempts to insert the file name into the compression command by 
*  calling sprintf(), with the file name as an argument.  This means 
that 
*  if the compression command has a %s anywhere in it, the name of the 
*  input file should be substituted for it.  Finally, the third 
argument 
*  on the command line should be the command  CHURN needs to spawn to 
*  decompress TEST.CMP to TEST.OUT. 
* 
*  An example of how this works using programs created in this book 
*  would look like this: 
* 
*  CHURN C:\ "LZSS-C %%s test.cmp" "LZSS-E test.cmp test.out" 
* 
* The doubled up % symbols are there to defeat variable substitution 
* under some command-line interpreters, such as 4DOS. 
* 
*  A more complicated example testing PKZIP might look like this: 
* 
*  CHURN C:\ "TEST %%S"  "PKUNZIP TEST.CMP" 
* 
*  where TEST.BAT had two lines that look like this: 
* 
*  COPY %1 TEST.OUT 
*  PKZIP -M TEST.CMP TEST.OUT 
* 
*  CHURN stores a summary of compression in a file called CHURN.LOG.  
This 
*  file could be used for further analysis by other programs. 
* 
*  To abort this program while it is running, don't start pounding away 
*  on the BREAK or CTRL-C keys.  They will just get absorbed by the 
*  compression program.  Instead, hit a single key, which will be 
detected 
*  by CHURN, and used as an abort signal. 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <time.h> 
#include <process.h> 
#include <conio.h> 
#include <dos.h> 
 
/* 
*  The findfirst and findnext functions operate nearly identically 
*  under TurboC and MSC.  The only difference is that the functions 
*  names, structures, and structure elements all have different names. 
*  I just create macros for these things and redefine them 
appropriately 
*  here. 
*/ 



 
#ifdef__TURBOC__ 
 
#include <dir.h> 
#define FILE_INFO                     struct ffblk 
#define FIND_FIRST( name, info ) findfirst( ( name ), (info ), 
FA_DIREC ) 
#define FIND_NEXT( info )             findnext( ( info ) ) 
#define FILE_IS_DIR( info )           ( ( info ).ff_attrib & FA_DIREC ) 
#define FILE_NAME( info )             ( ( info ).ff_name ) 
 
#else 
 
#define MSDOS 1 
#define FILE_INFO                     struct find_t 
#define FIND_FIRST( name, info )      _dos_findfirst( ( name ), 
_A_SUBDIR, 
            ( info ) ) 
#define FIND_NEXT( info )             _dos_findnext( ( info ) ) 
#define FILE_IS_DIR( info )           ( ( info ).attrib & _A_SUBDIR ) 
#define FILE_NAME( info )             ( ( info ).name ) 
 
#endif 
 
/* 
*  Some global variables. 
*/ 
 
int total_files: 
int total_passed; 
int total_failed; 
char *compress_command; 
char *expand_command; 
 
FILE *input; 
FILE *output; 
FILE *compressed; 
FILE *log_file; 
 
/* 
*  Declarations for global routines. 
*/ 
 
void churn_files( char *path ); 
int file_is_already_compressed( char *name ); 
void close_all_the_files( void ); 
int compress( char *file_name ); 
void usage_exit( void ); 
 
/* 
*  main() doesn't have to do a whole lot in this program.  It 
*  reads in the command line to determine what the root directory 
*  to start looking at is, then it initializes the total byte counts 
*  and the start time.  It can then call churn_files(), which does all 
*  the work, then report on the statistics resulting from churn_files. 
*/ 
 



void main( int argc, char * argv[] ) 
{ 
  time_t start_time; 
  time_t stop_time; 
  char root_dir[ 81 ]; 
 
  if ( argc != 4 ) 
     usage_exit(); 
  strcpy( root_dir, argv [  1 ]; 
  if ( root_dir[ strlen( root_dir ) - 1 ]  != `\\' ) 
     strcat( root_dir. "\\" ); 
  compress_command = argv[ 2 ]; 
  expand_command = argv[ 3 ]; 
 
  setbuf( stdout, NULL ); 
  setbuf( stderr, NULL ); 
  total_files = 0; 
  total_passed = 0; 
  total_failed = 0; 
  log_file = fopen( "CHURN.LOG", "w" ); 
  if ( log_file == NULL ) { 
    printf( "Couldn't open the log file!\n" ); 
    exit( 1 ); 
  } 
  fprintf( log_file, "                     " 
       "Original Packed\n" ); 
  fprintf( log_file, "          File Name   " 
       " Size Size Ratio  Result\n" ); 
  fprintf( log_file, "_________________    " 
       " _____ _____ ___ ____\n" ); 
  time( &start_time ); 
  churn_files( root_dir ); 
  time( &stop_time ); 
  fprintf( log_file, "\nTotal elapsed time: %f seconds\n", 
       difftime( stop_time, start_time ) ); 
  fprintf( log_file, "Total files: %d\n", total_files ); 
  fprintf( log_file, "Total passed: %d\n", total_passed ); 
  fprintf( log_file, "Total failed: %d\n", total_failed ); 
} 
/* 
* churn_files() is a routine that sits in a loop looking at 
* files in the directory specified by its single argument, "path". 
* As each file is looked at, one of three things happens.  If it 
* is a normal file, and has a compressed extension name, like ".ZIP", 
* the file is ignored.  If it is a normal file, and doesn't have a 
* compressed extension name, it is compressed and decompressed by 
* another routine.  Finally, if the file is a subdirectory, 
* churn_files() is called recursively with the file name as its 
* path argument.  This is one of those rare routines where recursion 
* provides a way to truly simplify the task at hand. 
*/ 
 
void churn_files( char *path ) 
{ 
  FILE_INFO file_info; 
  int result; 
  char full_name[ 81 ]; 



  strcpy( full_name, path ); 
  strcat( full_name, "*.*" ); 
  result = FIND_FIRST( full_name, &file_info ); 
 
  while ( result == 0 ) { 
    if ( kbhit() ) { 
        getch(); 
        exit(0); 
    } 
    if ( FILE_IS_DIR( file_info ) ) { 
      if ( FILE-NAME( file_info )[ 0 ] != '.' ) { 
        strcpy( full_name, path ); 
        strcat( full_name, FILE_NAME( file-info) ); 
        strcat( full_name, "\\" ); 
        churn_files( full_name ); 
      } 
    } else { 
      strcpy( full_name, path ); 
      strcat( full_name, FILE_NAME( file_info ) ); 
      if ( !file_is_already_compressed( full_name ) ) { 
        fprintf( stderr, "Testing %s\n", full_name ); 
        if ( !compress( full_name ) ) 
          fprintf( stderr, "Comparison failed!\n ); 
      } 
    } 
    result = FIND_NEXT( &file_info ); 
  } 
} 
 
/* 
* The job of this routine is simply to check on the file 
* whose name is passed as an argument.  The file extension is compared 
* against a list of standard extensions that are commonly used on 
* compressed files.  If it matches one of these names, we assume it is 
* compressed and return a TRUE, otherwise FALSE is returned. 
* 
* Note that when checking a compression routine for accuracy, it is 
* probably a good idea to stub out this routine.  Trying to compress 
* "uncompressible" files is a very good exercise for a compression 
* program.  It is probably not a good idea when checking compression 
* ratios, however. 
*/ 
 
int file_is_already_compressed( char *name ) 
{ 
  char *extension; 
  static char *matches[]={ "ZIP", "ICE", "LZH", "ARC", "GIF", "PAK", 
                           "ARJ", NULL }; 
  int i; 
 
  extension=strchr( name, '.' ); 
  if ( extension++ == NULL ) 
    return( 0 ); 
  i = 0; 
  while ( matches[ i ] != NULL ) 
       if ( strcmp( extension, matches[ i++ ] ) == 0 ) 
         return( 1 ); 



  return( 0 ); 
} 
 
/* 
* This is the routine that does the majority of the work for 
* this program.  It takes a file whose name is passed here.  It first 
* compresses, then decompresses that file.  It then compares the file 
* to the decompressed output, and reports on the results. 
*/ 
 
int compress( char *file_name ) 
{ 
  long new_size; 
  long old_size; 
  int c; 
  char command[ 132 ]; 
 
  printf( "%s\n", file_name ); 
  fprintf( log_file, "%-40s ", file_name ); 
  sprintf( command, compress_command, file_name ); 
  system( command ); 
  system( command, expand_command, file_name ); 
  system( command ); 
 
  input = fopen( file_name, "rb" ); 
  output = fopen( "TEST.OUT", "rb" ); 
  compressed = fopen( "TEST.CMP", "rb" ); 
 
  total_files++; 
  if ( input == NULL || output == NULL || compressed == NULL ) { 
    total_failed++; 
    close_all_the_files(); 
    fprintf( log_file, "Failed, couldn't open file!\n" ); 
    return( 0 ); 
  } 
 
  fseek( input, OL, SEEK_END ); 
  old_size = ftell( input ); 
  fseek( input, OL, SEEK_SET ); 
  fseek( compressed, OL, SEEK_END ); 
  new_size = ftell( compressed ); 
 
  fprintf( log_file, "%8ld %8ld ", old_size, new_size ); 
  if ( old_size == 0L ) 
    old_size = 1L; 
  fprintf( log_file, "%41d%% ", 
    100L - ( ( 100L * new_size ) / old_size ) ); 
  do { 
    c = getc( input ); 
    if ( getc( output ) != c ) { 
      fprintf( log_file, "Failed\n" ); 
      total_failed++; 
      close_all_the_files(); 
      return( 0 ); 
    } 
  } 
  while ( c != EOF ); 



  fprintf( log_file, "Passed\n" ); 
  close_all_the_files(); 
  total_passed++; 
  return( 1 ); 
} 
 
void close_all_the_files() 
{ 
  if ( input != NULL ) 
    fclose( input ); 
  if ( output != NULL ) 
    fclose( output ); 
  if ( compressed != NULL ) 
    fclose( compressed ); 
} 
 
/* 
* This routine is used to print out basic instructions for the use 
* of CHURN, and then exit. 
*/ 
 
void usage_exit( void ) 
{ 
  char *usage = "CHURN 1.0. Usage: CHURN root-dir \"compress " 
                "command\" \"expand command\n" 
                "\n" 
                "CHURN is used to test compression programs. " 
                "It does this by compressing\n" 
                "then expanding all of the files in and under " 
                "the specified root dir.\n" 
                "\n" 
                "For each file it finds, CHURN first executes " 
                "the compress command to create a\n" 
                "compressed file called TEST.CMP.  It then " 
                "executes the expand command to\n" 
                "create a file called TEST.OUT.  CHURN then " 
                "compares the two file to make sure\n" 
                "the compression cycle worked properly.\n" 
                "\n" 
                "The file name to be compressed will be " 
                "inserted into the compress command\n" 
                "using sprintf, with any %%s argument being " 
                "substituted with the name of the\n" 
                "file being compressed.  Note that the " 
                "compress and expand commands should be\n" 
                "enclosed in double quotes so that multiple " 
                "words can be included in the\n" 
                "printf( " commands.\n" 
                "\n" 
                "Note that you may have to double the %% " 
                "character on your command line to get\n" 
                "around argument substitution under some " 
                "command processors.  Finally, note that\n" 
                "CHURN executes the compression program " 
                "using a system() function call, so\n" 
                "batch files can be used to execute complex\n" 
                "compression sequences.\n" 



                "\n" 
                "Example:  CHURN C:\\ \"LZSS-C %%%%s TEST.CMP\" 
                "\"LZSS-C TEST.CMP TEST.OUT\""; 
  puts( usage ); 
  exit( 1 ); 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Glossary 
Adaptive compression, Adaptive modeling  

Data compression techniques that use a model can either use a fixed model for the 
entire stream they are processing, or modify the model as the stream is processed. 
Techniques that modify the model as it is processed are said to use adaptive 
modeling. An example of an adaptive compression technique would be LZW 
compression.  

ADPCM  
Adaptive Differential Pulse Code Modulation. Standard PCM encoding is a 
common technique for encoding audio data. Telephone conversations and audio 
CDs both use conventional PCM. PCM samples a waveform at uniform steps and 
encodes the level of the waveform. DPCM is Differential Pulse Code Modulation. 
DPCM doesn’t encode the level, it instead encodes the difference from the last 
sample. ADPCM takes that a step further, and modifies the coding of the 
difference depending on the state of the waveform. PCM encoding in telephone 
systems uses 64 K bits per second. ADPCM can reduce that rate to 32 or even 16 
K bits per second with relatively little reduction in voice quality.  

Alphabet  
An Alphabet is the set of all of the possible symbols that may appear in a message. 
For example, when compressing ASCII text files, the Alphabet would probably 
consist of characters 0x00 through 0x7f.  



Archive  
An archive is a volume or file containing one or more files that may or may not 
have been compressed. An archive is typically used as a convenient way to store 
or transport files. Programs such as ARC and PKZip compress files before 
placing them into archives.  

Arithmetic coding  
Traditional coding techniques such as ASCII or Huffman coding encode symbols 
into unique patterns of bits. Arithmetic coding instead takes an entire text and 
encodes it as a single floating point number less than 1 and greater than or equal 
to 0. Arithmetic coding can more efficiently encode texts by eliminating the 
quantization effects of other coding techniques.  

ARC, MS-DOS program  
ARC is a commercial archiving program created by System Enhancement 
Associates, of Wayne, N.J. ARC was one of the earliest compression/archive 
utilities to achieve wide popularity in the desktop computing world, beginning in 
the mid-1980s.  

ARJ, MS-DOS program  
ARJ is a commercial archiving program created by Robert Jung. ARJ is free of 
charge for individual use, but commercial users must pay a license fee. ARJ is 
also supplied with ANSI C source code for extracting files from ARJ archives that 
may be distributed without restrictions.  

Block Coding  
Compression of images is frequently done by coding smaller blocks of the image 
independent of one another. For example, the JPEG algorithm uses an 8-by-8 
block size when compressing graphics.  

CCITT  
CCITT is the International Telegraph and Telephone Consultative Committee. 
This standards organization is responsible for the sanctioning of many 
compression and transmission methods in use today, including several PCM and 
ADPCM techniques, FAX transmission, and the evolving JPEG and MPEG 
standards.  

Codes, (en)coding  
Symbols that are to be stored or manipulated by a computer are converted to 
codes. This process is referred to as coding. ASCII and EBCDIC are two of the 
most common methods of coding written text. Data compression can occur if 
more efficient methods of coding, such as Huffman coding, are used.  

COMPACT, UNIX program  
COMPACT is a UNIX program that used Dynamic Huffman coding to compress 
files. It generally fell out of use in favor of the COMPRESS program.  

COMPRESS, UNIX program  
COMPRESS is a UNIX program that uses an LZW implementation to compress 
files. COMPRESS has found widespread use in the UNIX community, and is 
available in the public domain. It has recently been thought that COMPRESS may 
infringe on a Unisys patent, which may curtail its use and distribution.  

Compression ratios  



Compression ratios are used to describe the difference between a file and a 
compressed copy of itself. There are several different ways of expressing this 
number. One common method is a ratio between input and output, as in “a 4:1 
compression ratio.” Another popular method is to express the difference between 
the files as a percentage ranging from 0% to 100% (or greater, if the compression 
failed to actually reduce the size of the file). Some people invert this scale, using 
100% as the “best” compression ratio. Occasionally, you still see the ratio of 
compressed to plain files expressed as “bits per byte.”  

CRC, Cyclical Redundancy Check  
A CRC is a number generated by applying a formula to a block of data, generally 
for use as a checksum. A good CRC formula should generate a different number 
for as many different error conditions as possible. The CRC formula referred to in 
this book is the commonly used 32-bit CCITT-specified formula.  

Discrete Cosine Transform  
The DCT is used in the JPEG image compression method. The DCT is similar to 
the Fast Fourier Transform, in that it transforms a set of data from the the spatial 
domain to the frequency domain and back again. Once a photographic image is 
transformed by the DCT into a set of frequency information, it can be effectively 
compressed using “lossy” techniques. Expanding the same image involves 
converting the frequency information back to spatial information.  

Dictionary, adaptive/static  
Macro substitution methods use a dictionary to compress data. A string of 
symbols is encoded as a pointer into a dictionary. An adaptive method, such as 
LZ77, is continually modifying its dictionary. A static dictionary will compress an 
entire stream using the same dictionary.  

Entropy, Information content  
Entropy is a measure of the amount of information in an object. The concept of 
“absolute entropy” remains elusive. In general, entropy is calculated with respect 
to a given model. Entropy can be expressed in bits. In this form it is generally 
referred to as “information content.”  

Escape code  
An Escape code is a special symbol used to ‘escape’ from the current context. In 
data compression, escape codes are frequently used when a symbol, not found in 
the current dictionary of symbols, needs to be encoded. The Escape code tells the 
decoder to change to a different context, where the symbol can be properly coded.  

Freeware  
Freeware is a term applied to software that is distributed without charge and may 
be used freely by anyone. It is distinguished from Public Domain software by 
virtue of the fact that the owner of the software retains the copyright to the work. 
Retaining the copyright allows the owner to restrain or control any modification 
or redistribution of the package. Software distributed by the Free Software 
Foundation, such as the EMACS editor, is generally referred to as freeware.  

Group 3 FAX  
Group 3 FAX is a CCITT standard for transmission of facsimile data. It can 
compress black and white images using a combination of differential, run length, 
and Huffman coding.  



Huffman coding  
Huffman is a method of encoding symbols that varies the length of the symbol in 
proportion to its information content. Symbols with a low probability of 
appearance are encoded with a code using may bits. Symbols with a high 
probability of appearance are represented with a code using fewer bits. Huffman 
codes can be properly decoded because they obey the prefix property, which 
means no code can be a prefix of another code. Huffman coding was first 
described in a seminal paper by D.A. Huffman in 1952.  

Information theory  
Information theory is the study of the storage, processing, and transmission of 
information. This branch of science is generally acknowledged as having been 
created by Claude Shannon at Bell Labs shortly after World War II.  

ISO  
ISO is the International Standards Organization. ISO is one of the bodies (along 
with the CCITT) involved in the JPEG and MPEG standardization efforts.  

JPEG  
JPEG stands for the Joint Photographic Experts Group. It is referred as a “joint” 
group because this committee is sanctioned by the CCITT and the ISO, two 
prominent international standards groups. JPEG refers both to the committee and 
their work—a compression standard that defines a method for compressing 
photographic images. Images compressed with the JPEG algorithm undergo a 
“lossy” compression. The amount of compression can be varied, with a resulting 
loss or gain in resolution. Most of the JPEG-like algorithms in use today rely on 
powerful dedicated processors to perform compression and decompression. 
Software-only techniques on general purpose desktop processors are still fairly 
slow. JPEG compression can achieve impressive compression ratios, reducing the 
storage required by images to less than 10% of the size of the original with only 
very slight loss of resolution. By sacrificing more resolution, you can compress 
images to 95% or more using JPEG.  

LHarc  
LHarc is a freeware compression program authored by Haruyasu Yoshizaki. It 
uses the LZSS variant of LZ77 compression, followed by a Dynamic Huffman 
postprocessing stage. The freeware status of this program, combined with the 
availability of source code, have made this a popular program.  

Linear Predictive Coding  
LPC is a coding technique that transmits voice data using a model of the vocal 
tract.  

Lossless  
Lossless compression is used to compress a text stream so that it can be expanded 
into an identical copy of the stream. This type of compression is normally 
required for data files.  

Lossy  
Lossy compression refers to a compression technique where the compressed 
stream cannot be expanded into an exact copy of the input. Lossy compression 
can be used on digitally stored representations of analog phenomena, such as 
graphics images and stored audio samples. The ability to sacrifice small amounts 



of resolution allows lossy algorithms to compress files to significantly smaller 
ratios. Lossy compression is sometimes referred to as “noisy” compression.  

LZW, LZSS, LZ-77, LZ-78  
Jacob Ziv and Abraham Lempel published a pair of papers in 1977 and 1978 that 
described two different dictionary-based compression techniques. LZ77 
substituted strings from a fixed-size window into previously seen text. LZ78 
builds up a phrase dictionary from previously seen text, with no limit on how far 
back a phrase may have appeared. These papers spurred a flurry of activity by 
other researchers who refined these techniques, resulting in compression 
algorithms that were superior to earlier statistical-based Huffman coding. 
Dictionary methods are widely-used today in V.42bis modems, in software such 
as LHarc, ARJ, and PKZIP, and in QIC magnetic tape drives.  

Model  
Compression algorithms generally maintain a “model,” which is a set of 
accumulated statistics describing the state of the encoder. For example, in a 
simple compression program, the model may be a count of the frequency of every 
symbol in an input file.  

MPEG  
MPEG stands for Moving Pictures Experts Group. Like JPEG, MPEG refers to 
both a group and the standard that the group is developing. MPEG is a committee 
sanctioned by the ISO to work on the digital transmission of broadcast quality full 
motion video and sound. The goal of the MPEG group is to be able to send a 
high-quality picture and stereo soundtrack through a 1.5 Mbps channel. The 
MPEG has drafted a standard which is presently under review.  

Nyquist Rate  
The rate that analog signal of frequency f has to be sampled at in order to be 
accurately reproduced. Harry Nyquist determined that this rate has to be greater 
than 2*f.  

Order (in re. model)  
The order of a model refers to how many previous symbols are taken into 
consideration when encoding. For example, an order-0 model ignores all previous 
symbols when determining what code to use for a given symbol. So even if the 
previous character in a file was ‘q’, the probability of a ‘u’ in an order-0 model 
will not go up. An order-1 model would take note of the ‘q’ and greatly increase 
the probability for the ‘u’.  

Phrase  
A phrase is a string of symbols of an arbitrary length. When programming in C, 
the term “string” can usually be substituted for phrase.  

PKZIP  
PKZIP is a popular desktop compression/archiving program. PKZIP is distributed 
via shareware channels by PKWare, Glendale, WI. This program uses several 
different dictionary-based compression algorithms to compress input files. It has 
achieved enough popularity in the MS-DOS world to be accepted as a “standard,” 
although the source code for the program remains proprietary.  

p X 64  



p x 64 refers to the CCITT standard regarding digital transmission of audiovisual 
information, commonly referred to as videoconferencing. ISDN communications 
networks allocate bandwidth in 64K bit/second “chunks.” The ‘p’ in p X 64 refers 
the notion that a video transmission channel will be allocated a certain number of 
64 Kbps channels. The quality of transmission will be affected by the magnitude 
of p. Videoconferencing can be done with p as low as 1 or 2, but transmission of 
motion is severely restricted. As p grows, higher quality transmission becomes 
possible.  

Run Length Encoding  
Run Length Encoding, or RLE, is a simple technique used to compress runs of 
identical symbols in a data stream. Typically RLE encodes a run of symbols as a 
symbol and a count. The simplicity of RLE and ease of implementation result in 
its frequent appearance in compression programs, although its performance is 
relatively poor.  

Shannon Fano coding  
Shannon Fano codings is a coding technique developed in the early 1950s which 
attempted to minimize the number of bits used in a message when the 
probabilities of symbols in the message were known. Shannon Fano coding has 
generally been superseded by Huffman coding, which produces provably 
optimum code sets, resulting in marginally better performance than Shannon Fano 
codes.  

Shannon, Claude  
Claude Shannon is known as the father of information theory for his work done in 
the 1940s and 1950s. Shannon defined the concept of “information content” and 
entropy as it relates to data. Shannon is also an ardent student of the art of 
juggling, both by man and machine.  

Shareware  
Shareware refers to an increasingly common method of software distribution. 
Shareware is based on a “try before you buy” concept. The user of a shareware 
program is authorized by the creator to try the program for a limited amount of 
time. After the evaluation period is over, the user is expected to “register” the 
program if it will continue being used. Registration generally consists of a 
payment in return for improved documentation, support, and other considerations.  
While shareware is a decidedly ad hoc concept, some standardization in the 
industry is being attempted by the Association for Shareware Professionals. The 
ASP has established a set of guidelines for authors of shareware defining various 
standards for distribution and support.  
While not part of the shareware definition, most shareware programs also have a 
significantly lower price than their commercial counterparts. Many consumers 
mistakenly feel that shareware is “free,” an idea being battled by the ASP.  

lSQ, MS-DOS compression program  
One of the earliest desktop compression programs was SQ, and its counterpart 
USQ. These two programs implemented a simple order 0 Huffman compression 
algorithm. They were first developed for the CP/M operating system, and were 
ported to MS-DOS soon after its release. SQ did not perform file archiving, so it 
was frequently combined with LU, a program that combined files into a library.  



The appearance of ARC as a shareware program soon drove SQ into obscurity. 
ARC not only offered superior compression performance with its LZW algorithm, 
it also combined the compression and librarian functions into a single program. 
This let users compress groups of files and move them into a single archive in one 
operation.  

lStatic model  
A static model is one that does not change while a stream of symbols is 
compressed. An example of this would be a simple order-0 Huffman code 
compression program. The classic implementation of this program counts all of 
the different characters in a file during a first pass. This data is used to then build 
a Huffman coding tree, which constitutes the static model. A second pass is then 
made over the data to perform the actual compression.  

Symbols  
In data compression terminology, a symbol is an atomic unit of information. 
General purpose compression programs frequently compress streams of bytes, 
where the byte is the same thing as the symbol. However, a symbol could just as 
easily be a floating point number, or a spoken word, etc.  

TAR, UNIX program  
TAR is a standard UNIX program used to create archives. It takes a group of files 
and combines them into a single file or volume. TAR does not perform any 
compression of the files. UNIX archives are frequently created by using TAR to 
pack a group of files together, then using COMPRESS to perform the data 
compression. The resulting file is referred to as being in “TAR.Z” format.  

Token  
An arbitrary object used to encode something else. In dictionary-based 
compression, a token is an object that can be used to decode a phrase.  

Welch, Terry  
Terry Welch took the LZ78 data compression algorithm and refined it into a 
“Technique for High-Performance Data Compression.” His patent on the LZW 
algorithm is now controlled by Unisys.  

Ziv & Lempel  
Jacob Ziv and Abraham Lempel are two Israeli information theorists who 
published the seminal papers on dictionary-based data compression in 1977 and 
1978.  

 
 


